
Setup

Setup instructions
This training depends on oc , the OpenShift command-line interface.

You have the choice of either using OpenShift’s web terminal or installing oc locally.

If you prefer to not install anything on your computer, follow the instructions on the 1. Web terminal page.

The 2. Local usage chapter explains how to install oc for the respective operating system.

Also have a look at the 3. Other ways to work with OpenShift, which is, however, totally optional.

Warning
In case you’ve already installed oc, please make sure you have an up-to-date version.

- acend gmbh

1 / 91

1. Web terminal
Using OpenShift’s web terminal might be more convenient for you as it doesn’t require you to install oc

locally on your computer.

Task 1.1: Login on the web console
First of all, open your browser. Then, log in on OpenShift’s web console using the URL and credentials
provided by your trainer.

Task 1.2: Initialize terminal

In OpenShift’s web console:

1. Click on the terminal icon on the upper right
2. Choose to create a new project
3. Name your project <username>-terminal where <username> is the username given to you during this training
4. Click Start

Note
If you do change your mind, head right over to 2. Local usage.

Warning
Make sure to create a dedicated project for the web terminal!

- acend gmbh

2 / 91

Task 1.3: Verification
After the initial setup, you’re presented with a web terminal. Tools like oc are already installed and you’re
also already logged in.

You can check this by executing the following command:

You’re now ready to go!

oc whoami

Warning
The terminal project is only meant to be used for the web terminal resources. Always check that you do not
use the terminal namespace for the other labs!

- acend gmbh

3 / 91

Next steps
If you’re interested, have a look at the 3. Other ways to work with OpenShift, which is however totally
optional.

When you’re ready to go, head on over to the labs and begin with the training!

- acend gmbh

4 / 91

file:///docs/

2. Local usage
As the labs of this training will be done in your company’s environment, please follow the company-specific
instructions on how to set up your local installation.

After installing oc , follow the instructions on 2.1. Console login in order to log in.

2.1. Console login

Task 2.1.1: Login on the web console
First of all, open your browser. Then, log in on OpenShift’s web console using the URL and credentials
provided by your trainer.

Task 2.1.2: Login on the command line
In order to log in on the command line, copy the login command from the web console.

To do that, open the Web Console and click on your username that you see at the top right, then choose
Copy Login Command.

A new tab or window will open in your browser.

The page now displays a link Display token. Click on it and copy the command under Log in with this
token.

Now paste the copied command on the command line.

Task 2.1.3: Verify login
If you now execute oc version you should see something like this (your output may vary):

Client Version: 4.11.2
Kustomize Version: v4.5.4
Kubernetes Version: v1.24.0+dc5a2fd

Note
You might need to log in again.

- acend gmbh

5 / 91

First steps with oc
The oc binary has many subcommands. Invoke oc --help (or simply -h) to get a list of all subcommands; oc

<subcommand> --help gives you detailed help about a subcommand.

Next steps
If you’re interested, have a look at the 3. Other ways to work with OpenShift, which is however totally
optional.

When you’re ready to go, head on over to the labs and begin with the training!

- acend gmbh

6 / 91

file:///docs/

3. Other ways to work with OpenShift

Other ways to work with OpenShift
If you don’t have access to a running OpenShift development environment (anymore), there are several
options to get one.

OpenShift Developer Sandbox : 30 days of no-cost access to a shared cluster on OpenShift
OpenShift Local : A local OpenShift environmennt running on your machine
OKD single node installation : OKD (OpenShift community edition) single node installation

Next steps
When you’re ready to go, head on over to the labs and begin with the training!

- acend gmbh

7 / 91

https://developers.redhat.com/developer-sandbox
https://developers.redhat.com/products/openshift-local/overview
https://docs.okd.io/latest/installing/installing_sno/install-sno-preparing-to-install-sno.html
file:///docs/

Labs
The purpose of these labs is to convey OpenShift basics by providing hands-on tasks for people. OpenShift
will allow you to deploy and deliver your software packaged as containers in an easy, straightforward way.

Goals of these labs:

Help you get started with this modern technology
Explain the basic concepts to you
Show you how to deploy your first applications on Kubernetes

Additional Docs
OpenShift Docs

Additional Tutorials
OpenShift Interactive Learning Portal

- acend gmbh

8 / 91

https://docs.openshift.com/
https://learn.openshift.com/

1. Introduction
In this lab, we will introduce the core concepts of OpenShift.

All explanations and resources used in this lab give only a quick and not detailed overview. As OpenShift is
based on Kubernetes, its concepts also apply to OpenShift which you can find in the official Kubernetes
documentation .

Core concepts
With the open source software OpenShift, you get a platform to build and deploy your application in a
container as well as operate it at the same time. Therefore, OpenShift is also called a Container Platform, or
the term Container-as-a-Service (CaaS) is used.

Depending on the configuration the term Platform-as-a-Service (PaaS) works as well.

Container engine
OpenShift’s underlying container engine is CRI-O . Earlier releases used Docker .

Docker was originally created to help developers test their applications in their continuous integration
environments. Nowadays, system admins also use it. CRI-O doesn’t exist as long as Docker does. It is a
“lightweight container runtime for Kubernetes” and is fully OCI-compliant .

Overview
OpenShift basically consists of control plane and worker nodes.

- acend gmbh

9 / 91

https://kubernetes.io/docs/concepts/
https://cri-o.io/
https://www.docker.com/
https://github.com/opencontainers/runtime-spec

Control plane and worker nodes
The control plane components are the API server, the scheduler and the controller manager. The API server
itself represents the management interface. The scheduler and the controller manager decide how
applications should be deployed on the cluster. Additionally, the state and configuration of the cluster itself
are controlled in the control plane components.

Worker nodes are also known as compute nodes, application nodes or minions, and are responsible for
running the container workload (applications). The control plane for the worker nodes is implemented in the
control plane components. The hosts running these components were historically called masters.

Containers and images
The smallest entities in Kubernetes and OpenShift are Pods, which resemble your containerized application.

Using container virtualization, processes on a Linux system can be isolated up to a level where only the
predefined resources are available. Several containers can run on the same system without “seeing” each
other (files, process IDs, network). One container should contain one application (web server, database,
cache, etc.). It should be at least one part of the application, e.g. when running a multi-service middleware.
In a container itself any process can be started that runs natively on your operating system.

Containers are based on images. An image represents the file tree, which includes the binary, shared
libraries and other files which are needed to run your application.

A container image is typically built from a Containerfile or Dockerfile , which is a text file filled with
instructions. The end result is a hierarchically layered binary construct. Depending on the backend, the
implementation uses overlay or copy-on-write (COW) mechanisms to represent the image.

Layer example for a Tomcat application:

1. Base image (CentOS 7)
2. Install Java
3. Install Tomcat
4. Install App

The pre-built images under version control can be saved in an image registry and can then be used by the
container platform.

Namespaces and Projects
Namespaces in Kubernetes represent a logical segregation of unique names for entities (Pods, Services,
Deployments, ConfigMaps, etc.).

In OpenShift, users do not directly create Namespaces, they create Projects. A Project is a Namespace with
additional annotations.

Permissions and roles can be bound on a per-project basis. This way, a user can control his own resources
inside a Project.

Note
OpenShift’s concept of a Project does not coincide with Rancher’s.

Note
Some resources are valid cluster-wise and cannot be set and controlled on a namespace basis.

- acend gmbh

10 / 91

Pods
A Pod is the smallest entity in Kubernetes and OpenShift.

It represents one instance of your running application process. The Pod consists of at least two containers,
one for your application itself and another one as part of the Kubernetes design, to keep the network
namespace. The so-called infrastructure container (or pause container) is therefore automatically added by
Kubernetes.

The application ports from inside the Pod are exposed via Services.

Services
A service represents a static endpoint for your application in the Pod. As a Pod and its IP address typically
are considered dynamic, the IP address of the Service does not change when changing the application
inside the Pod. If you scale up your Pods, you have an automatic internal load balancing towards all Pod IP
addresses.

There are different kinds of Services:

ClusterIP : Default virtual IP address range
NodePort : Same as ClusterIP plus open ports on the nodes
LoadBalancer : An external load balancer is created, only works in cloud environments, e.g. AWS ELB
ExternalName : A DNS entry is created, also only works in cloud environments

A Service is unique inside a Namespace.

Deployment
Have a look at the official documentation .

Volume
Have a look at the official documentation .

Job
Have a look at the official documentation .

History
There is a official Kubernetes Documentary available on Youtube.

Kubernetes: The Documentary [PART 1]
Kubernetes: The Documentary [PART 2]

Inspired by the open source success of Docker in 2013 and seeing the need for innovation in the area of
large-scale cloud computing, a handful of forward-thinking Google engineers set to work on the container
orchestrator that would come to be known as Kubernetes– this new tool would forever change the way the
internet is built.

These engineers overcome technical challenges, resistance to open source from within, naysayers, and
intense competition from other big players in the industry.

Most engineers know about “The Container Orchestrator Wars’’ but most people would not be able to

- acend gmbh

11 / 91

https://docs.openshift.com/container-platform/latest/applications/deployments/what-deployments-are.html
https://docs.openshift.com/container-platform/latest/nodes/containers/nodes-containers-volumes.html
https://docs.openshift.com/container-platform/latest/nodes/jobs/nodes-nodes-jobs.html
https://www.youtube.com/watch?v=BE77h7dmoQU
https://www.youtube.com/watch?v=318elIq37PE

explain exactly what happened, and why it was Kubernetes that ultimately came out on top.

There is no topic more relevant to the current open source landscape. This film captures the story directly
from the people who lived it, featuring interviews with prominent engineers from Google, Red Hat, Twitter
and others.

1.1. YAML
YAML Ain’t Markup Language (YAML) is a human-readable data-serialization language. YAML is not a
programming language. It is mostly used for storing configuration information.

As you will see a lot of YAML in our Kubernetes basics course, we want to make sure you can read and write
YAML. If you are not yet familiar with YAML, this introduction is waiting for you. Otherwise, feel free to skip it
or come back later if you meet some less familiar YAML stuff.

This introduction is based on the YAML Tutorial from cloudbees.com .

For more information and the full spec have a look at https://yaml.org/

A simple file
Let’s look at a YAML file for an overview:

The file starts with three dashes. These dashes indicate the start of a new YAML document. YAML supports
multiple documents, and compliant parsers will recognize each set of dashes as the beginning of a new one.

Then we see the construct that makes up most of a typical YAML document: a key-value pair. foo is a key
that points to a string value: foo is not bar

YAML knows four different data types:

foo & bar are strings.
pi is a floating-point number

Note
Data serialization is the process of converting data objects, or object states present in complex data
structures, into a stream of bytes for storage, transfer, and distribution in a form that can allow recovery of
its original structure.

foo: "foo is not bar"
bar: "bar is not foo"
pi: 3.14159
awesome: true
kubernetes-birth-year: 2015
cloud-native:
 - scalable
 - dynamic
 - cloud
 - container
kubernetes:
 version: "1.22.0"
 deployed: true
 applications:
 - name: "My App"
 location: "public cloud"

- acend gmbh

12 / 91

https://www.cloudbees.com/blog/yaml-tutorial-everything-you-need-get-started
https://yaml.org/

awesome is a boolean
kubernetes-birth-year is an integer

You can enclose strings in single or double-quotes or no quotes at all. YAML recognizes unquoted numerals
as integers or floating point.

The cloud-native item is an array with four elements, each denoted by an opening dash. The elements in
cloud-native are indented with two spaces. Indentation is how YAML denotes nesting. The number of spaces

can vary from file to file, but tabs are not allowed.

Finally, kubernetes is a dictionary that contains a string version , a boolean deployed and an array applications

where the item of the array contains two strings .

YAML supports nesting of key-values, and mixing types.

Indentation and Whitespace
Whitespace is part of YAML’s formatting. Unless otherwise indicated, newlines indicate the end of a field.
You structure a YAML document with indentation. The indentation level can be one or more spaces. The
specification forbids tabs because tools treat them differently.

Comments
Comments begin with a pound sign. They can appear after a document value or take up an entire line.

YAML data types
Values in YAML’s key-value pairs are scalar. They act like the scalar types in languages like Perl, Javascript,
and Python. It’s usually good enough to enclose strings in quotes, leave numbers unquoted, and let the
parser figure it out. But that’s only the tip of the iceberg. YAML is capable of a great deal more.

Key-Value Pairs and Dictionaries
The key-value is YAML’s basic building block. Every item in a YAML document is a member of at least one
dictionary. The key is always a string. The value is a scalar so that it can be any datatype. So, as we’ve
already seen, the value can be a string, a number, or another dictionary.

Numeric types
YAML recognizes numeric types. We saw floating point and integers above. YAML supports several other
numeric types. An integer can be decimal, hexadecimal, or octal.

YAML supports both fixed and exponential floating point numbers.

This is a full line comment
foo: bar # this is a comment, too

foo: 12345
bar: 0x12d4
plop: 023332

- acend gmbh

13 / 91

Finally, we can represent not-a-number (NAN) or infinity.

Foo is infinity. Bar is negative infinity, and plop is NAN.

Strings
YAML strings are Unicode. In most situations, you don’t have to specify them in quotes.

But if we want escape sequences handled, we need to use double quotes.

YAML processes the first value as ending with a carriage return and linefeed. Since the second value is not
quoted, YAML treats the \n as two characters.

YAML will not escape strings with single quotes, but the single quotes do avoid having string contents
interpreted as document formatting. String values can span more than one line. With the fold (greater than)
character, you can specify a string in a block.

But it’s interpreted without the newlines: bar : this is not a normal string it spans more than one line see?

The block (pipe) character has a similar function, but YAML interprets the field exactly as is.

foo: 1230.15
bar: 12.3015e+05

foo: .inf
bar: -.Inf
plop: .NAN

foo: this is a normal string

foo: "this is not a normal string\n"
bar: this is not a normal string\n

foo: this is not a normal string
bar: this is not a normal string\n

bar: >
 this is not a normal string it
 spans more than
 one line
 see?

- acend gmbh

14 / 91

So, we see the newlines where they are in the document.

Nulls
You enter nulls with a tilde or the unquoted null string literal.

Booleans
YAML indicates boolean values with the keywords True, On and Yes for true. False is indicated with False,
Off, or No.

Arrays
You can specify arrays or lists on a single line.

Or, you can put them on multiple lines.

bar: |
 this is not a normal string it
 spans more than
 one line
 see?

bar : this is not a normal string it
spans more than
one line
see?

foo: ~
bar: null

foo: True
bar: False
light: On
TV: Off

items: [1, 2, 3, 4, 5]
names: ["one", "two", "three", "four"]

- acend gmbh

15 / 91

The multiple line format is useful for lists that contain complex objects instead of scalars.

An array can contain any valid YAML value. The values in a list do not have to be the same type.

Dictionaries
We covered dictionaries above, but there’s more to them. Like arrays, you can put dictionaries inline. We
saw this format above.

We’ve seen them span lines before.

And, of course, they can be nested and hold any value.

items:
 - 1
 - 2
 - 3
 - 4
 - 5
names:
 - "one"
 - "two"
 - "three"
 - "four"

items:
 - things:
 thing1: huey
 things2: dewey
 thing3: louie
 - other things:
 key: value

foo: { thing1: huey, thing2: louie, thing3: dewey }

foo: bar
bar: foo

foo:
 bar:
 - bar
 - rab
 - plop

- acend gmbh

16 / 91

2. First steps
In this lab, we will interact with the OpenShift cluster for the first time.

Projects
A Project is a logical design used in OpenShift to organize and separate your applications, Deployments,
Pods, Ingresses, Services, etc. on a top-level basis. Authorized users inside a Project are able to manage
those resources. Project names have to be unique in your cluster.

Task 2.2: Create a Project
You would usually create your first Project here using oc new-project . This is, however, not possible on the
provided cluster. Instead, a Project named <username>-training-test has been pre-created for you. Use this
Project for all labs in this training except for 9.5. ResourceQuotas and LimitRanges.

Task 2.3: Discover the OpenShift web console
Discover the different menu entries in the two views, the Developer and the Administrator view.

Display all existing Pods in the previously created Project with oc (there shouldn’t yet be any):

Warning
Please make sure you completed Setup before you continue with this lab.

Note
Please inform your trainer if you don’t see such a Project.

Note
In order to declare what Project to use, you have several possibilities:

Some prefer to explicitly select the Project for each oc command by adding --namespace <namespace> or -n

<namespace>

By using the following command, you can switch into another Project instead of specifying it for each
oc command

oc project <namespace>

oc get pod --namespace <namespace>

Note
With the command oc get you can display all kinds of resources.

- acend gmbh

17 / 91

3. Deploying a container image
In this lab, we are going to deploy our first container image and look at the concepts of Pods, Services, and
Deployments.

Task 3.1: Start and stop a single Pod
After we’ve familiarized ourselves with the platform, we are going to have a look at deploying a pre-built
container image from Quay.io or any other public container registry.

In OpenShift we have used the <project> identifier to select the correct project. Please use the same
identifier in the context <namespace> to do the same for all upcoming labs. Ask your trainer if you want more
information on that.

First, we are going to directly start a new Pod. For this we have to define our Kubernetes Pod resource
definition. Create a new file pod_awesome-app.yaml with the content below.

Now we can apply this with:

Note
Alternatively, you can create the Pod definition on the web console. Simply click on the plus sign button
on the upper right (1), make sure you’ve selected the correct Project (2) and paste the content.

apiVersion: v1
kind: Pod
metadata:
 name: awesome-app
spec:
 containers:
 - image: REGISTRY-URL/acend/example-web-go:latest
 imagePullPolicy: Always
 name: awesome-app
 resources:
 limits:
 cpu: 20m
 memory: 32Mi
 requests:
 cpu: 10m
 memory: 16Mi

Note
If you used the web console to import the Pod’s YAML definition, don’t execute the following command.

- acend gmbh

18 / 91

The output should be:

pod/awesome-app created

Use oc get pods --namespace <namespace> in order to show the running Pod:

Which gives you an output similar to this:

NAME READY STATUS RESTARTS AGE
awesome-app 1/1 Running 0 1m24s

Have a look at your awesome-app Pod inside the OpenShift web console.

Now delete the newly created Pod:

Task 3.2: Create a Deployment
In some use cases it can make sense to start a single Pod. But this has its downsides and is not really a
common practice. Let’s look at another concept which is tightly coupled with the Pod: the so-called
Deployment. A Deployment ensures that a Pod is monitored and checks that the number of running Pods
corresponds to the number of requested Pods.

To create a new Deployment we first define our Deployment in a new file deployment_example-web-go.yaml with
the content below.

oc apply -f pod_awesome-app.yaml --namespace <namespace>

oc get pods --namespace <namespace>

oc delete pod awesome-app --namespace <namespace>

Note
You could, of course, again import the YAML on the web console as described above.

- acend gmbh

19 / 91

And with this we create our Deployment inside our already created namespace:

The output should be:

deployment.apps/example-web-go created

We’re using a simple sample application written in Go, which you can find built as an image on Quay.io or as
source code on GitHub .

OpenShift creates the defined and necessary resources, pulls the container image (in this case from
Quay.io) and deploys the Pod.

Use the command oc get with the -w parameter in order to get the requested resources and afterward
watch for changes.

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app: example-web-go
 name: example-web-go
spec:
 replicas: 1
 selector:
 matchLabels:
 app: example-web-go
 template:
 metadata:
 labels:
 app: example-web-go
 spec:
 containers:
 - image: REGISTRY-URL/acend/example-web-go:latest
 name: example-web-go
 resources:
 requests:
 cpu: 10m
 memory: 16Mi
 limits:
 cpu: 20m
 memory: 32Mi

Note
If you used the web console to import the Deployment’s YAML definition, don’t execute the following
command.

oc apply -f deployment_example-web-go.yaml --namespace <namespace>

Note
The oc get -w command will never end unless you terminate it with CTRL-c.

oc get pods -w --namespace <namespace>

- acend gmbh

20 / 91

https://quay.io/repository/acend/example-web-go
https://github.com/acend/awesome-apps

This process can last for some time depending on your internet connection and if the image is already
available locally.

Creating Kubernetes resources
There are two fundamentally different ways to create Kubernetes resources. You’ve already seen one way:
Writing the resource’s definition in YAML (or JSON) and then applying it on the cluster using oc apply .

The other variant is to use helper commands. These are more straightforward: You don’t have to copy a
YAML definition from somewhere else and then adapt it. However, the result is the same. The helper
commands just simplify the process of creating the YAML definitions.

As an example, let’s look at creating above deployment, this time using a helper command instead. If you
already created the Deployment using above YAML definition, you don’t have to execute this command:

It’s important to know that these helper commands exist. However, in a world where GitOps concepts have
an ever-increasing presence, the idea is not to constantly create these resources with helper commands.
Instead, we save the resources’ YAML definitions in a Git repository and leave the creation and management
of those resources to a tool.

Task 3.3: Viewing the created resources
Display the created Deployment using the following command:

A Deployment defines the following facts:

Update strategy: How application updates should be executed and how the Pods are exchanged
Containers

Which image should be deployed
Environment configuration for Pods
ImagePullPolicy

Note
Instead of using the -w parameter you can also use the watch command which should be available on most
Linux distributions:

watch oc get pods --namespace <namespace>

Note
If you want to create your own container images and use them with OpenShift, you definitely should have a
look at these best practices and apply them. This image creation guide may be for OpenShift, however it
also applies to Kubernetes and other container platforms.

oc create deployment example-web-go --image=REGISTRY-URL/acend/example-web-go:latest --namespace <namespace>

oc get deployments --namespace <namespace>

- acend gmbh

21 / 91

https://docs.openshift.com/container-platform/latest/openshift_images/create-images.html
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

The number of Pods/Replicas that should be deployed

By using the -o (or --output) parameter we get a lot more information about the deployment itself. You can
choose between YAML and JSON formatting by indicating -o yaml or -o json . In this training we are going to
use YAML, but please feel free to replace yaml with json if you prefer.

After the image has been pulled, OpenShift deploys a Pod according to the Deployment:

which gives you an output similar to this:

NAME READY STATUS RESTARTS AGE
example-web-go-69b658f647-xnm94 1/1 Running 0 39s

The Deployment defines that one replica should be deployed — which is running as we can see in the
output. This Pod is not yet reachable from outside the cluster.

Task 3.4: Verify the Deployment in the OpenShift web
console
Try to display the logs from the example application in the OpenShift web console.

oc get deployment example-web-go -o yaml --namespace <namespace>

oc get pods --namespace <namespace>

- acend gmbh

22 / 91

4. Exposing a service
In this lab, we are going to make the freshly deployed application from the last lab available online.

Task 4.1: Create a ClusterIP Service
The command oc apply -f deployment_example-web-go.yaml from the last lab creates a Deployment but no Service.
A OpenShift Service is an abstract way to expose an application running on a set of Pods as a network
service. For some parts of your application (for example, frontends) you may want to expose a Service to an
external IP address which is outside your cluster.

OpenShift ServiceTypes allow you to specify what kind of Service you want. The default is ClusterIP .

Type values and their behaviors are:

ClusterIP : Exposes the Service on a cluster-internal IP. Choosing this value only makes the Service
reachable from within the cluster. This is the default ServiceType.

NodePort : Exposes the Service on each Node’s IP at a static port (the NodePort). A ClusterIP Service, to
which the NodePort Service routes, is automatically created. You’ll be able to contact the NodePort
Service from outside the cluster, by requesting <NodeIP>:<NodePort>.

LoadBalancer : Exposes the Service externally using a cloud provider’s load balancer. NodePort and
ClusterIP Services, to which the external load balancer routes, are automatically created.

ExternalName : Maps the Service to the contents of the externalName field (e.g. foo.bar.example.com), by
returning a CNAME record with its value. No proxying of any kind is set up.

You can also use Ingress to expose your Service. Ingress is not a Service type, but it acts as the entry point
for your cluster. Ingress exposes HTTP and HTTPS routes from outside the cluster to services within the
cluster. Traffic routing is controlled by rules defined on the Route resource. A Route may be configured to
give Services externally reachable URLs, load balance traffic, terminate SSL / TLS, and offer name-based
virtual hosting. An Ingress controller is responsible for fulfilling the route, usually with a load balancer,
though it may also configure your edge router or additional frontends to help handle the traffic.

In order to create a Route, we first need to create a Service of type ClusterIP .

To create the Service add a new file svc-web-go.yaml with the following content:

And then apply the file with:

apiVersion: v1
kind: Service
metadata:
 labels:
 app: example-web-go
 name: example-web-go
spec:
 ports:
 - port: 5000
 protocol: TCP
 targetPort: 5000
 selector:
 app: example-web-go
 type: ClusterIP

- acend gmbh

23 / 91

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types

There is also am imperative command to create a service and expose your application which can be used
instead of the yaml file with the oc apply ... command

oc expose deployment example-web-go --type=ClusterIP --name=example-web-go --port=5000 --target-port=5000 --namespace <
namespace>

Let’s have a more detailed look at our Service:

Which gives you an output similar to this:

By executing the following command:

You get additional information:

apiVersion: v1
kind: Service
metadata:
 ...
 labels:
 app: example-web-go
 managedFields:
 ...
 name: example-web-go
 namespace: <namespace>
 ...
spec:
 clusterIP: 10.43.91.62
 externalTrafficPolicy: Cluster
 ports:
 - port: 5000
 protocol: TCP
 targetPort: 5000
 selector:
 app: example-web-go
 sessionAffinity: None
 type: ClusterIP
status:
 loadBalancer: {}

oc apply -f svc-web-go.yaml --namespace <namespace>

oc get services --namespace <namespace>

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
example-web-go ClusterIP 10.43.91.62 <none> 5000/TCP

Note
Service IP (CLUSTER-IP) addresses stay the same for the duration of the Service’s lifespan.

oc get service example-web-go -o yaml --namespace <namespace>

- acend gmbh

24 / 91

The Service’s selector defines which Pods are being used as Endpoints. This happens based on labels. Look
at the configuration of Service and Pod in order to find out what maps to what:

...
 selector:
 app: example-web-go
...

With the following command you get details from the Pod:

Let’s have a look at the label section of the Pod and verify that the Service selector matches the Pod’s
labels:

...
 labels:
 app: example-web-go
...

This link between Service and Pod can also be displayed in an easier fashion with the oc describe command:

Name: example-web-go
Namespace: example-ns
Labels: app=example-web-go
Annotations: <none>
Selector: app=example-web-go
Type: ClusterIP
IP: 10.39.240.212
Port: <unset> 5000/TCP
TargetPort: 5000/TCP
Endpoints: 10.36.0.8:5000
Session Affinity: None
External Traffic Policy: Cluster
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------

The Endpoints show the IP addresses of all currently matched Pods.

oc get service example-web-go -o yaml --namespace <namespace>

Note
First, get all Pod names from your namespace with (oc get pods --namespace <namespace>) and then replace
<pod> in the following command. If you have installed and configured the bash completion, you can also
press the TAB key for autocompletion of the Pod’s name.

oc get pod <pod> -o yaml --namespace <namespace>

oc describe service example-web-go --namespace <namespace>

- acend gmbh

25 / 91

Task 4.2: Expose the Service
With the ClusterIP Service ready, we can now create the Route resource.

The output should be:

route.route.openshift.io/example-web-go created

We are now able to access our app via the freshly created route at https://example-web-go-<namespace>.<appdomain>

Find your actual app URL by looking at your route (HOST/PORT):

Browse to the URL and check the output of your app.

Task 4.4: For fast learners
Have a closer look at the resources created in your namespace <namespace> with the following commands and
try to understand them:

oc create route edge example-web-go --service example-web-go --namespace <namespace>

oc get route --namespace <namespace>

Note
If the site doesn’t load, check if you are using the http:// , not the https:// protocol, which might be the
default in your browser.

Note
The <appdomain> is the default domain under which your applications will be accessible and is provided by
your trainer. You can also use oc get route example-web-go to see the exact value of the exposed route.

oc describe namespace <namespace>

oc get all --namespace <namespace>

oc describe <resource> <name> --namespace <namespace>

oc get <resource> <name> -o yaml --namespace <namespace>

- acend gmbh

26 / 91

5. Scaling
In this lab, we are going to show you how to scale applications on OpenShift. Furthermore, we show you how
OpenShift makes sure that the number of requested Pods is up and running and how an application can tell
the platform that it is ready to receive requests.

Task 5.1: Scale the example application
Create a new Deployment in your Namespace. So again, lets define the Deployment using YAML in a file
deployment_example-web-app.yaml with the following content:

and then apply with:

If we want to scale our example application, we have to tell the Deployment that we want to have three
running replicas instead of one. Let’s have a closer look at the existing ReplicaSet:

Note
This lab does not depend on previous labs. You can start with an empty Namespace.

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app: example-web-app
 name: example-web-app
spec:
 replicas: 1
 selector:
 matchLabels:
 app: example-web-app
 strategy:
 rollingUpdate:
 maxSurge: 25%
 maxUnavailable: 0
 type: RollingUpdate
 template:
 metadata:
 labels:
 app: example-web-app
 spec:
 containers:
 - image: REGISTRY-URL/acend/example-web-python:latest
 name: example-web-app
 resources:
 limits:
 cpu: 100m
 memory: 128Mi
 requests:
 cpu: 50m
 memory: 128Mi

oc apply -f deployment_example-web-app.yaml --namespace <namespace>

oc get replicasets --namespace <namespace>

- acend gmbh

27 / 91

Which will give you an output similar to this:

NAME DESIRED CURRENT READY AGE
example-web-app-86d9d584f8 1 1 1 110s

Or for even more details:

The ReplicaSet shows how many instances of a Pod are desired, current and ready.

Now we scale our application to three replicas:

Check the number of desired, current and ready replicas:

NAME DESIRED CURRENT READY AGE
example-web-app-86d9d584f8 3 3 3 4m33s

Look at how many Pods there are:

Which gives you an output similar to this:

NAME READY STATUS RESTARTS AGE
example-web-app-86d9d584f8-7vjcj 1/1 Running 0 5m2s
example-web-app-86d9d584f8-hbvlv 1/1 Running 0 31s
example-web-app-86d9d584f8-qg499 1/1 Running 0 31s

As we changed the number of replicas with the oc scale deployment command, the example-web-app Deployment
now differs from your local deployment_example-web-app.yaml file. Change your local deployment_example-web-app.yaml

file to match the current number of replicas and update the value replicas to 3 :

oc get replicaset <replicaset> -o yaml --namespace <namespace>

oc scale deployment example-web-app --replicas=3 --namespace <namespace>

oc get replicasets --namespace <namespace>

oc get pods --namespace <namespace>

Note
OpenShift supports horizontal and vertical autoscaling .

- acend gmbh

28 / 91

https://docs.openshift.com/container-platform/latest/nodes/pods/nodes-pods-autoscaling.html
https://docs.openshift.com/container-platform/latest/nodes/pods/nodes-pods-vertical-autoscaler.html

Check for uninterruptible Deployments
Now we expose our application to the internet by creating a service and a route.

First the service:

Then the route:

Let’s look at our Service. We should see all three corresponding Endpoints:

Name: example-web-app
Namespace: acend-test
Labels: app=example-web-app
Annotations: <none>
Selector: app=example-web-app
Type: ClusterIP
IP Family Policy: SingleStack
IP Families: IPv4
IP: 172.30.89.44
IPs: 172.30.89.44
Port: <unset> 5000/TCP
TargetPort: 5000/TCP
Endpoints: 10.125.4.70:5000,10.126.4.137:5000,10.126.4.138:5000
Session Affinity: None
Events: <none>

Scaling of Pods is fast as OpenShift simply creates new containers.

You can check the availability of your Service while you scale the number of replicas up and down in your
browser: https://<route hostname> .

[...]
metadata:
 labels:
 app: example-web-app
 name: example-web-app
spec:
 replicas: 3
 selector:
 matchLabels:
 app: example-web-app
[...]

oc expose deployment example-web-app --name="example-web-app" --port=5000 --namespace <namespace>

oc create route edge example-web-app --port 5000 --service example-web-app --namespace <namespace>

oc describe service example-web-app --namespace <namespace>

Note
You can find out the route’s hostname by looking at the output of oc get route .

- acend gmbh

29 / 91

Now, execute the corresponding loop command for your operating system in another console.

Linux:

Windows PowerShell:

Scale from 3 replicas to 1. The output shows which Pod is still alive and is responding to requests:

example-web-app-86d9d584f8-7vjcj TIME: 17:33:07,289
example-web-app-86d9d584f8-7vjcj TIME: 17:33:08,357
example-web-app-86d9d584f8-hbvlv TIME: 17:33:09,423
example-web-app-86d9d584f8-7vjcj TIME: 17:33:10,494
example-web-app-86d9d584f8-qg499 TIME: 17:33:11,559
example-web-app-86d9d584f8-hbvlv TIME: 17:33:12,629
example-web-app-86d9d584f8-qg499 TIME: 17:33:13,695
example-web-app-86d9d584f8-hbvlv TIME: 17:33:14,771
example-web-app-86d9d584f8-hbvlv TIME: 17:33:15,840
example-web-app-86d9d584f8-7vjcj TIME: 17:33:16,912
example-web-app-86d9d584f8-7vjcj TIME: 17:33:17,980
example-web-app-86d9d584f8-7vjcj TIME: 17:33:19,051
example-web-app-86d9d584f8-7vjcj TIME: 17:33:20,119
example-web-app-86d9d584f8-7vjcj TIME: 17:33:21,182
example-web-app-86d9d584f8-7vjcj TIME: 17:33:22,248
example-web-app-86d9d584f8-7vjcj TIME: 17:33:23,313
example-web-app-86d9d584f8-7vjcj TIME: 17:33:24,377
example-web-app-86d9d584f8-7vjcj TIME: 17:33:25,445
example-web-app-86d9d584f8-7vjcj TIME: 17:33:26,513

The requests get distributed amongst the three Pods. As soon as you scale down to one Pod, there should
be only one remaining Pod that responds.

Let’s make another test: What happens if you start a new Deployment while our request generator is still
running?

During a short period we won’t get a response:

URL=$(oc get routes example-web-app -o go-template="{{ .spec.host }}" --namespace <namespace>)
while true; do sleep 1; curl -s https://${URL}/pod/; date "+ TIME: %H:%M:%S,%3N"; done

while(1) {
 Start-Sleep -s 1
 Invoke-RestMethod https://<URL>/pod/
 Get-Date -Uformat "+ TIME: %H:%M:%S,%3N"
}

oc rollout restart deployment example-web-app --namespace <namespace>

- acend gmbh

30 / 91

example-web-app-86d9d584f8-7vjcj TIME: 17:37:24,121
example-web-app-86d9d584f8-7vjcj TIME: 17:37:25,189
example-web-app-86d9d584f8-7vjcj TIME: 17:37:26,262
example-web-app-86d9d584f8-7vjcj TIME: 17:37:27,328
example-web-app-86d9d584f8-7vjcj TIME: 17:37:28,395
example-web-app-86d9d584f8-7vjcj TIME: 17:37:29,459
example-web-app-86d9d584f8-7vjcj TIME: 17:37:30,531
example-web-app-86d9d584f8-7vjcj TIME: 17:37:31,596
example-web-app-86d9d584f8-7vjcj TIME: 17:37:32,662
no answer
example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:33,729
example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:34,794
example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:35,862
example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:36,929
example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:37,995
example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:39,060
example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:40,118
example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:41,187

In our example, we use a very lightweight Pod. If we had used a more heavyweight Pod that needed a
longer time to respond to requests, we would of course see a larger gap. An example for this would be a
Java application with a startup time of 30 seconds:

example-spring-boot-2-73aln TIME: 16:48:25,251
example-spring-boot-2-73aln TIME: 16:48:26,305
example-spring-boot-2-73aln TIME: 16:48:27,400
example-spring-boot-2-73aln TIME: 16:48:28,463
example-spring-boot-2-73aln TIME: 16:48:29,507
<html><body><h1>503 Service Unavailable</h1>
No server is available to handle this request.
</body></html>
 TIME: 16:48:33,562
<html><body><h1>503 Service Unavailable</h1>
No server is available to handle this request.
</body></html>
 TIME: 16:48:34,601
 ...
example-spring-boot-3-tjdkj TIME: 16:49:20,114
example-spring-boot-3-tjdkj TIME: 16:49:21,181
example-spring-boot-3-tjdkj TIME: 16:49:22,231

It is even possible that the Service gets down, and the routing layer responds with the status code 503 as
can be seen in the example output above.

In the following chapter we are going to look at how a Service can be configured to be highly available.

Uninterruptible Deployments
The rolling update strategy makes it possible to deploy Pods without interruption. The rolling update
strategy means that the new version of an application gets deployed and started. As soon as the application
says it is ready, OpenShift forwards requests to the new instead of the old version of the Pod, and the old
Pod gets terminated.

Additionally, container health checks help OpenShift to precisely determine what state the application is in.

Basically, there are two different kinds of checks that can be implemented:

Liveness probes are used to find out if an application is still running
Readiness probes tell us if the application is ready to receive requests (which is especially relevant for
the above-mentioned rolling updates)

These probes can be implemented as HTTP checks, container execution checks (the execution of a
command or script inside a container) or TCP socket checks.

- acend gmbh

31 / 91

https://kubernetes.io/docs/tutorials/kubernetes-basics/update/update-intro/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/

In our example, we want the application to tell OpenShift that it is ready for requests with an appropriate
readiness probe.

Our example application has a health check context named health: http://${URL}/health

Task 5.2: Availability during deployment
Define the readiness probe on the Deployment using the following command:

The command above results in the following readinessProbe snippet being inserted into the Deployment:

We are now going to verify that a redeployment of the application does not lead to an interruption.

Set up the loop again to periodically check the application’s response (you don’t have to set the $URL

variable again if it is still defined):

Windows PowerShell:

Restart your Deployment with:

oc set probe deploy/example-web-app --readiness --get-url=http://:5000/health --initial-delay-seconds=10 --timeout-seco
nds=1 --namespace <namespace>

...
containers:
 - image: REGISTRY-URL/acend/example-web-python:latest
 imagePullPolicy: Always
 name: example-web-app
 readinessProbe:
 httpGet:
 path: /health
 port: 5000
 scheme: HTTP
 initialDelaySeconds: 10
 timeoutSeconds: 1
...

URL=$(oc get routes example-web-app -o go-template="{{ .spec.host }}" --namespace <namespace>)
while true; do sleep 1; curl -s https://${URL}/pod/; date "+ TIME: %H:%M:%S,%3N"; done

while(1) {
 Start-Sleep -s 1
 Invoke-RestMethod https://<URL>/pod/
 Get-Date -Uformat "+ TIME: %H:%M:%S,%3N"
}

oc rollout restart deployment example-web-app --namespace <namespace>

- acend gmbh

32 / 91

Self-healing
Via the Deployment definition we told OpenShift how many replicas we want. So what happens if we simply
delete a Pod?

Look for a running Pod (status RUNNING) that you can bear to kill via oc get pods .

Show all Pods and watch for changes:

Now delete a Pod (in another terminal) with the following command:

Observe how OpenShift instantly creates a new Pod in order to fulfill the desired number of running
instances.

oc get pods -w --namespace <namespace>

oc delete pod <pod> --namespace <namespace>

- acend gmbh

33 / 91

6. Troubleshooting
This lab helps you troubleshoot your application and shows you some tools to make troubleshooting easier.

Logging into a container
Running containers should be treated as immutable infrastructure and should therefore not be modified.
However, there are some use cases in which you have to log into your running container. Debugging and
analyzing is one example for this.

Task 6.1: Shell into Pod
With OpenShift you can open a remote shell into a Pod without installing SSH by using the command oc rsh .
The command can also be used to execute any command in a Pod.

Choose a Pod with oc get pods --namespace <namespace> and execute the following command:

You now have a running shell session inside the container in which you can execute every binary available,
e.g.:

total 12
-rw-r--r-- 1 10020700 root 8192 Nov 27 15:12 hellos.db
-rwxrwsr-x 1 web root 2454 Oct 5 08:55 run.py
drwxrwsr-x 1 web root 17 Oct 5 08:55 static
drwxrwsr-x 1 web root 63 Oct 5 08:55 templates

With exit or CTRL+d you can leave the container and close the connection:

Task 6.2: Single commands
Single commands inside a container can also be executed with oc rsh :

Note
If you’re using Git Bash on Windows, you need to append the command with winpty.

oc rsh --namespace <namespace> <pod>

ls -l

exit

- acend gmbh

34 / 91

Example:

oc rsh --namespace acend-test example-web-app-8b465c687-t9g7b env
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
TERM=xterm
HOSTNAME=example-web-app-8b465c687-t9g7b
NSS_SDB_USE_CACHE=no
KUBERNETES_PORT_443_TCP=tcp://172.30.0.1:443
KUBERNETES_PORT_443_TCP_PORT=443
EXAMPLE_WEB_APP_PORT_5000_TCP_PORT=5000
...

The debug command
One of the disadvantages of using the oc rsh command is that it depends on the container to actually run. If
the Pod can’t even start, this is a problem but also where the oc debug command comes in. The oc debug

command starts an interactive shell using the definition of a Deployment, Pod, DaemonSet, Job or even an
ImageStreamTag. In OpenShift 4 it can also be used to open a shell on a Node to analyze it.

The quick way of using it is oc debug RESOURCE/NAME but have a good look at its help page. There are some very
interesting parameters like --as-root that give you (depending on your permissions on the cluster) a very
powerful means of debugging a Pod.

Watching log files
Log files of a Pod can be shown with the following command:

The parameter -f allows you to follow the log file (same as tail -f). With this, log files are streamed and
new entries are shown immediately.

When a Pod is in state CrashLoopBackOff it means that although multiple attempts have been made, no
container inside the Pod could be started successfully. Now even though no container might be running at
the moment the oc logs command is executed, there is a way to view the logs the application might have
generated. This is achieved using the -p or --previous parameter.

oc rsh --namespace <namespace> <pod> <command>

oc logs <pod> --namespace <namespace>

Note
This command will only work on pods that had container restarts. You can check the RESTARTS column in the
oc get pods output if this is the case.

oc logs -p <pod> --namespace <namespace>

Note
Baloise uses Splunk to aggregate and visualize all logs, including those of Pods.

- acend gmbh

35 / 91

https://www.splunk.com/

Task 6.3: Port forwarding
OpenShift allows you to forward arbitrary ports to your development workstation. This allows you to access
admin consoles, databases, etc., even when they are not exposed externally. Port forwarding is handled by
the OpenShift control plane nodes and therefore tunneled from the client via HTTPS. This allows you to
access the OpenShift platform even when there are restrictive firewalls or proxies between your workstation
and OpenShift.

Get the name of the Pod:

Then execute the port forwarding command using the Pod’s name:

Don’t forget to change the Pod name to your own installation. If configured, you can use auto-completion.

The output of the command should look like this:

Forwarding from 127.0.0.1:5000 -> 5000
Forwarding from [::1]:5000 -> 5000

The application is now available with the following link: http://localhost:5000/ . Or try a curl command:

With the same concept you can access databases from your local workstation or connect your local
development environment via remote debugging to your application in the Pod.

This documentation page offers some more details about port forwarding.

oc get pod --namespace <namespace>

Note
Best run this command in a separate shell, or in the background by adding a “&” at the end of the
command.

oc port-forward <pod> 5000:5000 --namespace <namespace>

Note
Use the additional parameter --address <IP address> (where <IP address> refers to a NIC’s IP address from your
local workstation) if you want to access the forwarded port from outside your own local workstation.

curl localhost:5000

Note
The oc port-forward process runs as long as it is not terminated by the user. So when done, stop it with CTRL-c.

- acend gmbh

36 / 91

http://localhost:5000/
https://docs.openshift.com/container-platform/latest/nodes/containers/nodes-containers-port-forwarding.html

Events
OpenShift maintains an event log with high-level information on what’s going on in the cluster. It’s possible
that everything looks okay at first but somehow something seems stuck. Make sure to have a look at the
events because they can give you more information if something is not working as expected.

Use the following command to list the events in chronological order:

Dry-run
To help verify changes, you can use the optional oc flag --dry-run=client -o yaml to see the rendered YAML
definition of your Kubernetes objects, without sending it to the API.

The following oc subcommands support this flag (non-final list):

apply

create

expose

patch

replace

run

set

For example, we can use the --dry-run=client flag to create a template for our Deployment:

The result is the following YAML output:

oc get events --sort-by=.metadata.creationTimestamp --namespace <namespace>

oc create deployment example-web-app --image=REGISTRY-URL/acend/example-web-python:latest --namespace acend-test --dry-
run=client -o yaml

- acend gmbh

37 / 91

oc API requests
If you want to see the HTTP requests oc sends to the Kubernetes API in detail, you can use the optional flag
--v=10 .

For example, to see the API request for creating a deployment:

The resulting output looks like this:

apiVersion: apps/v1
kind: Deployment
metadata:
 creationTimestamp: null
 labels:
 app: example-web-app
 name: example-web-app
 namespace: acend-test
spec:
 replicas: 1
 selector:
 matchLabels:
 app: example-web-app
 strategy: {}
 template:
 metadata:
 creationTimestamp: null
 labels:
 app: example-web-app
 spec:
 containers:
 - image: REGISTRY-URL/acend/example-web-python:latest
 name: example-web
 resources: {}
status: {}

oc create deployment test-deployment --image=REGISTRY-URL/acend/example-web-python:latest --namespace <namespace> --rep
licas=0 --v=10

- acend gmbh

38 / 91

As you can see, the output conveniently contains the corresponding curl commands which we could use in
our own code, tools, pipelines etc.

Progress
At this point, you are able to visualize your progress on the labs by browsing through the following page
http://localhost:5000/progress

If you are not able to open your awesome-app with localhost, because you are using a webshell, you can
also use the ingress address: https://example-web-app-<namespace>.<appdomain>/progress to access the dashboard.

You may need to set some extra permissions to let the dashboard monitor your progress. Have fun!

I1114 15:31:13.605759 85289 request.go:1073] Request Body: {"kind":"Deployment","apiVersion":"apps/v1","metadata":{"n
ame":"test-deployment","namespace":"acend-test","creationTimestamp":null,"labels":{"app":"test-deployment"}},"spec":{"r
eplicas":0,"selector":{"matchLabels":{"app":"test-deployment"}},"template":{"metadata":{"creationTimestamp":null,"label
s":{"app":"test-deployment"}},"spec":{"containers":[{"name":"example-web","image":"REGISTRY-URL/acend/example-web-pytho
n:latest","resources":{}}]}},"strategy":{}},"status":{}}
I1114 15:31:13.605817 85289 round_trippers.go:466] curl -v -XPOST -H "Accept: application/json, */*" -H "Content-Typ
e: application/json" -H "User-Agent: oc/4.11.0 (linux/amd64) kubernetes/262ac9c" -H "Authorization: Bearer <masked>" 'h
ttps://api.ocp-staging.cloudscale.puzzle.ch:6443/apis/apps/v1/namespaces/acend-test/deployments?fieldManager=kubectl-cr
eate&fieldValidation=Ignore'
I1114 15:31:13.607320 85289 round_trippers.go:495] HTTP Trace: DNS Lookup for api.ocp-staging.cloudscale.puzzle.ch re
solved to [{5.102.150.82 }]
I1114 15:31:13.611279 85289 round_trippers.go:510] HTTP Trace: Dial to tcp:5.102.150.82:6443 succeed
I1114 15:31:13.675096 85289 round_trippers.go:553] POST https://api.ocp-staging.cloudscale.puzzle.ch:6443/apis/apps/v
1/namespaces/acend-test/deployments?fieldManager=kubectl-create&fieldValidation=Ignore 201 Created in 69 milliseconds
I1114 15:31:13.675120 85289 round_trippers.go:570] HTTP Statistics: DNSLookup 1 ms Dial 3 ms TLSHandshake 35 ms Serve
rProcessing 27 ms Duration 69 ms
I1114 15:31:13.675137 85289 round_trippers.go:577] Response Headers:
I1114 15:31:13.675151 85289 round_trippers.go:580] Audit-Id: 509255b1-ee23-479a-be56-dfc3ab073864
I1114 15:31:13.675164 85289 round_trippers.go:580] Cache-Control: no-cache, private
I1114 15:31:13.675181 85289 round_trippers.go:580] Content-Type: application/json
I1114 15:31:13.675200 85289 round_trippers.go:580] X-Kubernetes-Pf-Flowschema-Uid: e3e152ee-768c-43c5-b350-bb3cbf
806147
I1114 15:31:13.675215 85289 round_trippers.go:580] X-Kubernetes-Pf-Prioritylevel-Uid: 47f392da-68d1-4e43-9d77-ff5
f7b7ecd2e
I1114 15:31:13.675230 85289 round_trippers.go:580] Content-Length: 1739
I1114 15:31:13.675244 85289 round_trippers.go:580] Date: Mon, 14 Nov 2022 14:31:13 GMT
I1114 15:31:13.676116 85289 request.go:1073] Response Body: {"kind":"Deployment","apiVersion":"apps/v1","metadata":{"
name":"test-deployment","namespace":"acend-test","uid":"a6985d28-3caa-451f-a648-4c7cde3b51ac","resourceVersion":"206938
5577","generation":1,"creationTimestamp":"2022-11-14T14:31:13Z","labels":{"app":"test-deployment"},"managedFields":[{"m
anager":"kubectl-create","operation":"Update","apiVersion":"apps/v1","time":"2022-11-14T14:31:13Z","fieldsType":"Fields
V1","fieldsV1":{"f:metadata":{"f:labels":{".":{},"f:app":{}}},"f:spec":{"f:progressDeadlineSeconds":{},"f:replicas":{},
"f:revisionHistoryLimit":{},"f:selector":{},"f:strategy":{"f:rollingUpdate":{".":{},"f:maxSurge":{},"f:maxUnavailable":
{}},"f:type":{}},"f:template":{"f:metadata":{"f:labels":{".":{},"f:app":{}}},"f:spec":{"f:containers":{"k:{\"name\":\"e
xample-web\"}":{".":{},"f:image":{},"f:imagePullPolicy":{},"f:name":{},"f:resources":{},"f:terminationMessagePath":{},"
f:terminationMessagePolicy":{}}},"f:dnsPolicy":{},"f:restartPolicy":{},"f:schedulerName":{},"f:securityContext":{},"f:t
erminationGracePeriodSeconds":{}}}}}}]},"spec":{"replicas":0,"selector":{"matchLabels":{"app":"test-deployment"}},"temp
late":{"metadata":{"creationTimestamp":null,"labels":{"app":"test-deployment"}},"spec":{"containers":[{"name":"example-
web","image":"REGISTRY-URL/acend/example-web-python:latest","resources":{},"terminationMessagePath":"/dev/termination-l
og","terminationMessagePolicy":"File","imagePullPolicy":"Always"}],"restartPolicy":"Always","terminationGracePeriodSeco
nds":30,"dnsPolicy":"ClusterFirst","securityContext":{},"schedulerName":"default-scheduler"}},"strategy":{"type":"Rolli
ngUpdate","rollingUpdate":{"maxUnavailable":"25%","maxSurge":"25%"}},"revisionHistoryLimit":10,"progressDeadlineSeconds
":600},"status":{}}
deployment.apps/test-deployment created

Note
If you created the deployment to see the output, you can delete it again as it’s not used anywhere else
(which is also the reason why the replicas are set to 0):

oc delete deploy/test-deployment --namespace <namespace>

- acend gmbh

39 / 91

http://localhost:5000/progress

oc create rolebinding progress --clusterrole=view --serviceaccount=<namespace>:default --namespace=<namespace>

- acend gmbh

40 / 91

7. Attaching a database
Numerous applications are stateful in some way and want to save data persistently, be it in a database, as
files on a filesystem or in an object store. In this lab, we are going to create a MariaDB database and
configure our application to store its data in it.

Task 7.1: Instantiate a MariaDB database
We are first going to create a so-called Secret in which we store sensitive data. The secret will be used to
access the database and also to create the initial database. The oc create secret command helps us create
the secret like so:

Above command has not yet created any resources on our cluster as we used the --dry-run=client parameter
and redirected the output into the file secret_mariadb.yaml .

The reason we haven’t actually created the Secret yet but instead put the resource definition in a file has to
do with the way things work at Baloise. The file will help you later. But for now, create the Secret by
applying the file’s content:

The Secret contains the database name, user, password, and the root password. However, these values will
neither be shown with oc get nor with oc describe :

apiVersion: v1
data:
 database-name: YWNlbmQtZXhhbXBsZS1kYg==
 database-password: bXlzcWxwYXNzd29yZA==
 database-root-password: bXlzcWxyb290cGFzc3dvcmQ=
 database-user: YWNlbmRfdXNlcg==
kind: Secret
metadata:
 ...
type: Opaque

Warning
Please make sure you completed labs 2. First steps, 3. Deploying a container image and 4. Exposing a
service before you continue with this lab.

oc create secret generic mariadb \
 --from-literal=database-name=acend_exampledb \
 --from-literal=database-password=mysqlpassword \
 --from-literal=database-root-password=mysqlrootpassword \
 --from-literal=database-user=acend_user \
 --namespace <namespace> \
 --dry-run=client -o yaml > secret_mariadb.yaml

oc apply -f secret_mariadb.yaml

oc get secret mariadb --output yaml --namespace <namespace>

- acend gmbh

41 / 91

The reason is that all the values in the .data section are base64 encoded. Even though we cannot see the
true values, they can easily be decoded:

We are now going to create a Deployment and a Service. As a first example, we use a database without
persistent storage. Only use an ephemeral database for testing purposes as a restart of the Pod leads to
data loss. We are going to look at how to persist this data in a persistent volume later on.

In our case we want to create a Deployment and Service for our MariaDB database. Save this snippet as
mariadb.yaml :

echo "YWNlbmQtZXhhbXBsZS1kYg==" | base64 -d

Note
There’s also the oc extract command which can be used to extract the content of Secrets and ConfigMaps
into a local directory. Use oc extract --help to see how it works.

Note
By default, Secrets are not encrypted!

However, both OpenShift and Kubernetes (1.13 and later) offer the capability to encrypt data in etcd.

At Baloise, secrets are managed by HashiCorp Vault and integrated into OpenShift by use of the External
Secrets Operator .

apiVersion: v1
kind: Service
metadata:
 name: mariadb
 labels:
 template: mariadb-ephemeral-template
spec:
 ports:
 - name: mariadb
 port: 3306
 protocol: TCP
 targetPort: 3306
 selector:
 app: mariadb
 type: ClusterIP

apiVersion: apps/v1
kind: Deployment
metadata:
 name: mariadb
 labels:
 app: mariadb
spec:
 selector:
 matchLabels:
 app: mariadb
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: mariadb
 spec:
 containers:
 - image: REGISTRY-URL/acend/mariadb-105:1
 name: mariadb
 env:
 - name: MYSQL_USER

- acend gmbh

42 / 91

https://docs.openshift.com/container-platform/latest/security/encrypting-etcd.html
https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/
https://external-secrets.io/

Apply it with:

As soon as the container image has been pulled, you will see a new Pod using oc get pods .

The environment variables defined in the deployment configure the MariaDB Pod and how our frontend will
be able to access it.

The interesting thing about Secrets is that they can be reused, e.g., in different Deployments. We could
extract all the plaintext values from the Secret and put them as environment variables into the
Deployments, but it’s way easier to instead simply refer to its values inside the Deployment (as in this lab)
like this:

 - name: MYSQL_USER
 valueFrom:
 secretKeyRef:
 key: database-user
 name: mariadb
 - name: MYSQL_PASSWORD
 valueFrom:
 secretKeyRef:
 key: database-password
 name: mariadb
 - name: MYSQL_ROOT_PASSWORD
 valueFrom:
 secretKeyRef:
 key: database-root-password
 name: mariadb
 - name: MYSQL_DATABASE
 valueFrom:
 secretKeyRef:
 key: database-name
 name: mariadb
 livenessProbe:
 tcpSocket:
 port: 3306
 ports:
 - containerPort: 3306
 name: mariadb
 resources:
 limits:
 cpu: 500m
 memory: 512Mi
 requests:
 cpu: 50m
 memory: 128Mi
 volumeMounts:
 - mountPath: /var/lib/mysql/data
 name: mariadb-data
 volumes:
 - emptyDir: {}
 name: mariadb-data

oc apply -f mariadb.yaml --namespace <namespace>

- acend gmbh

43 / 91

...
spec:
 template:
 spec:
 containers:
 - name: mariadb
 env:
 - name: MYSQL_USER
 valueFrom:
 secretKeyRef:
 key: database-user
 name: mariadb
 - name: MYSQL_PASSWORD
 valueFrom:
 secretKeyRef:
 key: database-password
 name: mariadb
 - name: MYSQL_ROOT_PASSWORD
 valueFrom:
 secretKeyRef:
 key: database-root-password
 name: mariadb
 - name: MYSQL_DATABASE
 valueFrom:
 secretKeyRef:
 key: database-name
 name: mariadb
...

Above lines are an excerpt of the MariaDB Deployment. Most parts have been cut out to focus on the
relevant lines: The references to the mariadb Secret. As you can see, instead of directly defining
environment variables you can refer to a specific key inside a Secret. We are going to make further use of
this concept for our Python application.

Task 7.3: Attach the database to the application
By default, our example-web-app application uses an SQLite memory database.

However, this can be changed by defining the following environment variable to use the newly created
MariaDB database:

#MYSQL_URI=mysql://<user>:<password>@<host>/<database>
MYSQL_URI=mysql://acend_user:mysqlpassword@mariadb/acend_exampledb

The connection string our example-web-app application uses to connect to our new MariaDB, is a concatenated
string from the values of the mariadb Secret.

For the actual MariaDB host, you can either use the MariaDB Service’s ClusterIP or DNS name as the
address. All Services and Pods can be resolved by DNS using their name.

The following commands set the environment variables for the deployment configuration of the example-web-

app application:

Warning
Depending on the shell you use, the following set env command works but inserts too many apostrophes!
Check the deployment’s environment variable afterwards or directly edit it as described further down
below.

- acend gmbh

44 / 91

and

The first command inserts the values from the Secret, the second finally uses these values to put them in
the environment variable MYSQL_URI which the application considers.

You can also do the changes by directly editing your local deployment_example-web-app.yaml file. Find the section
which defines the containers. You should find it under:

...
spec:
...
 template:
 ...
 spec:
 containers:
 - image: ...
...

The dash before image: defines the beginning of a new container definition. The following specifications
should be inserted into this container definition:

Your file should now look like this:

oc set env --from=secret/mariadb --prefix=MYSQL_ deploy/example-web-app --namespace <namespace>

oc set env deploy/example-web-app MYSQL_URI='mysql://$(MYSQL_DATABASE_USER):$(MYSQL_DATABASE_PASSWORD)@mariadb/$(MYSQL_
DATABASE_NAME)' --namespace <namespace>

 env:
 - name: MYSQL_DATABASE_NAME
 valueFrom:
 secretKeyRef:
 key: database-name
 name: mariadb
 - name: MYSQL_DATABASE_PASSWORD
 valueFrom:
 secretKeyRef:
 key: database-password
 name: mariadb
 - name: MYSQL_DATABASE_ROOT_PASSWORD
 valueFrom:
 secretKeyRef:
 key: database-root-password
 name: mariadb
 - name: MYSQL_DATABASE_USER
 valueFrom:
 secretKeyRef:
 key: database-user
 name: mariadb
 - name: MYSQL_URI
 value: mysql://$(MYSQL_DATABASE_USER):$(MYSQL_DATABASE_PASSWORD)@mariadb/$(MYSQL_DATABASE_NAME)

- acend gmbh

45 / 91

 ...
 containers:
 - image: REGISTRY-URL/acend/example-web-python:latest
 imagePullPolicy: Always
 name: example-web-app
 ...
 env:
 - name: MYSQL_DATABASE_NAME
 valueFrom:
 secretKeyRef:
 key: database-name
 name: mariadb
 - name: MYSQL_DATABASE_PASSWORD
 valueFrom:
 secretKeyRef:
 key: database-password
 name: mariadb
 - name: MYSQL_DATABASE_ROOT_PASSWORD
 valueFrom:
 secretKeyRef:
 key: database-root-password
 name: mariadb
 - name: MYSQL_DATABASE_USER
 valueFrom:
 secretKeyRef:
 key: database-user
 name: mariadb
 - name: MYSQL_URI
 value: mysql://$(MYSQL_DATABASE_USER):$(MYSQL_DATABASE_PASSWORD)@mariadb/$(MYSQL_DATABASE_NAME)

Then use:

to apply the changes.

The environment can also be checked with the set env command and the --list parameter:

This will show the environment as follows:

deployments/example-web-app, container example-web-app
MYSQL_DATABASE_PASSWORD from secret mariadb, key database-password
MYSQL_DATABASE_ROOT_PASSWORD from secret mariadb, key database-root-password
MYSQL_DATABASE_USER from secret mariadb, key database-user
MYSQL_DATABASE_NAME from secret mariadb, key database-name
MYSQL_URI=mysql://$(MYSQL_DATABASE_USER):$(MYSQL_DATABASE_PASSWORD)@mariadb/$(MYSQL_DATABASE_NAME)

oc apply -f deployment_example-web-app.yaml --namespace <namespace>

oc set env deploy/example-web-app --list --namespace <namespace>

Warning
Do not proceed with the lab before all example-web-app pods are restarted successfully.

The change of the deployment definition (environment change) triggers a new rollout and all example-web-
app pods will be restarted. The application will not be connected to the database until all pods are restarted
successfully.

- acend gmbh

46 / 91

In order to find out if the change worked we can either look at the container’s logs (oc logs <pod>) or we
could register some “Hellos” in the application, delete the Pod, wait for the new Pod to be started and check
if they are still there.

Task 7.4: Manual database connection
As described in 6. Troubleshooting we can log into a Pod with oc rsh <pod> .

Show all Pods:

Which gives you an output similar to this:

NAME READY STATUS RESTARTS AGE
example-web-app-574544fd68-qfkcm 1/1 Running 0 2m20s
mariadb-f845ccdb7-hf2x5 1/1 Running 0 31m
mariadb-1-deploy 0/1 Completed 0 11m

Log into the MariaDB Pod:

You are now able to connect to the database and display the data. Login with:

Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 52810
Server version: 10.2.22-MariaDB MariaDB Server

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [acend_exampledb]>

Show all tables with:

Note
This does not work if we delete the database Pod as its data is not yet persisted.

oc get pods --namespace <namespace>

Note
As mentioned in 6. Troubleshooting, remember to append the command with winpty if you’re using Git Bash
on Windows.

oc rsh --namespace <namespace> <mariadb-pod-name>

mysql -u$MYSQL_USER -p$MYSQL_PASSWORD -h$MARIADB_SERVICE_HOST $MYSQL_DATABASE

- acend gmbh

47 / 91

Show any entered “Hellos” with:

Task 7.5: Import a database dump
Our task is now to import this dump.sql into the MariaDB database running as a Pod. Use the mysql

command line utility to do this. Make sure the database is empty beforehand. You could also delete and
recreate the database.

Solution
This is how you copy the database dump into the MariaDB Pod.

Download the dump.sql or get it with curl:

Copy the dump into the MariaDB Pod:

This is how you log into the MariaDB Pod:

This command shows how to drop the whole database:

show tables;

select * from hello;

Note
You can also copy local files into a Pod using oc cp. Be aware that the tar binary has to be present inside the
container and on your operating system in order for this to work! Install tar on UNIX systems with e.g. your
package manager, on Windows there’s e.g. cwRsync . If you cannot install tar on your host, there’s also the
possibility of logging into the Pod and using curl -O <url>.

curl -O https://raw.githubusercontent.com/acend/kubernetes-basics-training/main/content/en/docs/attaching-a-database/du
mp.sql

oc cp ./dump.sql <podname>:/tmp/ --namespace <namespace>

oc rsh --namespace <namespace> <podname>

mysql -u$MYSQL_USER -p$MYSQL_PASSWORD -h$MARIADB_SERVICE_HOST $MYSQL_DATABASE

- acend gmbh

48 / 91

https://raw.githubusercontent.com/acend/kubernetes-basics-training/main/content/en/docs/attaching-a-database/dump.sql
https://www.itefix.net/cwrsync
https://raw.githubusercontent.com/acend/kubernetes-basics-training/main/content/en/docs/attaching-a-database/dump.sql

Import a dump:

Check your app to see the imported “Hellos”.

drop database `acend_exampledb`;
create database `acend_exampledb`;
exit

mysql -u$MYSQL_USER -p$MYSQL_PASSWORD -h$MARIADB_SERVICE_HOST $MYSQL_DATABASE < /tmp/dump.sql

Note
You can find your app URL by looking at your route:

oc get route --namespace <namespace>

Note
A database dump can be created as follows:

oc rsh --namespace <namespace> <podname>

mysqldump --user=$MYSQL_USER --password=$MYSQL_PASSWORD -h$MARIADB_SERVICE_HOST $MYSQL_DATABASE > /tmp/dump.sql

oc cp <podname>:/tmp/dump.sql /tmp/dump.sql

- acend gmbh

49 / 91

8. Persistent storage
By default, data in containers is not persistent as was the case e.g. in 7. Attaching a database. This means
that the data written in a container is lost as soon as it does not exist anymore. We want to prevent this
from happening. One possible solution to this problem is to use persistent storage.

Request storage
Attaching persistent storage to a Pod happens in two steps. The first step includes the creation of a so-
called PersistentVolumeClaim (PVC) in our namespace. This claim defines amongst other things what size
we would like to get.

The PersistentVolumeClaim only represents a request but not the storage itself. It is automatically going to
be bound to a PersistentVolume by OpenShift, one that has at least the requested size. If only volumes exist
that have a bigger size than was requested, one of these volumes is going to be used. The claim will
automatically be updated with the new size. If there are only smaller volumes available, the claim cannot be
fulfilled as long as no volume with the exact same or larger size is created.

Attaching a volume to a Pod
In a second step, the PVC from before is going to be attached to the Pod. In 5. Scaling we used oc set to
add a readiness probe to the Deployment. We are now going to do the same and insert the
PersistentVolume.

Task 8.1: Add a PersistentVolume
The oc set volume command makes it possible to create a PVC and attach it to a Deployment in one fell
swoop:

With the instruction above we create a PVC named mariadb-data of 1Gi in size, attach it to the
DeploymentConfig mariadb and mount it at /var/lib/mysql . This is where the MariaDB process writes its data
by default so after we make this change, the database will not even notice that it is writing in a
PersistentVolume.

We need to redeploy the application pod, our application automatically creates the database schema at

Note
If you are using Windows, your shell might assume that it has to use the POSIX-to-Windows path conversion
for the mount path /var/lib/mysql . PowerShell is known to not do this while, e.g., Git Bash does.

Prepend your command with MSYS_NO_PATHCONV=1 if the resulting mount path was mistakenly converted.

oc set volume deploy/mariadb --add --name=mariadb-data --claim-name=mariadb-data --type persistentVolumeClaim --mount-p
ath=/var/lib/mysql --claim-size=1G --overwrite --namespace <namespace>

Note
Because we just changed the DeploymentConfig with the oc set command, a new Pod was automatically
redeployed. This unfortunately also means that we just lost the data we inserted before.

- acend gmbh

50 / 91

startup time. Wait for the database pod to be started fully before restarting the application pod.

If you want to force a redeployment of a Pod, you can use this:

Using the command oc get persistentvolumeclaim or oc get pvc , we can display the freshly created
PersistentVolumeClaim:

Which gives you an output similar to this:

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
mariadb-data Bound pvc-2cb78deb-d157-11e8-a406-42010a840034 1Gi RWO standard 11s

The two columns STATUS and VOLUME show us that our claim has been bound to the PersistentVolume pvc-

2cb78deb-d157-11e8-a406-42010a840034 .

Error case
If the container is not able to start it is the right moment to debug it! Check the logs from the container and
search for the error.

Task 8.2: Persistence check
Restore data
Repeat the task to import a database dump .

Test
Scale your MariaDB Pod to 0 replicas and back to 1. Observe that the new Pod didn’t loose any data.

oc rollout restart deployment example-web-app --namespace <namespace>

oc get pvc --namespace <namespace>

oc logs mariadb-f845ccdb7-hf2x5 --namespace <namespace>

Note
If the container won’t start because the data directory already has files in it, use the oc debug command
mentioned in 7. Attaching a database to check its content and remove it if necessary.

- acend gmbh

51 / 91

file:///attaching-a-database/#task-75-import-a-database-dump

9. Additional concepts
OpenShift does not only know Pods, Deployments, Services, etc. There are various other kinds of resources.
In the next few labs, we are going to have a look at some of them.

9.1. StatefulSets
Stateless applications or applications with a stateful backend can be described as Deployments. However,
sometimes your application has to be stateful. Examples would be an application that needs a static, non-
changing hostname every time it starts or a clustered application with a strict start/stop order of its services
(e.g. RabbitMQ). These features are offered by StatefulSets.

Consistent hostnames
While in normal Deployments a hash-based name of the Pods (also represented as the hostname inside the
Pod) is generated, StatefulSets create Pods with preconfigured names. An example of a RabbitMQ cluster
with three instances (Pods) could look like this:

rabbitmq-0
rabbitmq-1
rabbitmq-2

Scaling
Scaling is handled differently in StatefulSets. When scaling up from 3 to 5 replicas in a Deployment, two
additional Pods are started at the same time (based on the configuration). Using a StatefulSet, scaling is
done serially:

Let’s use our RabbitMQ example again:

1. The StatefulSet is scaled up using: oc scale deployment rabbitmq --replicas=5 --namespace <namespace>

2. rabbitmq-3 is started
3. As soon as Pod rabbitmq-3 is in Ready state the same procedure starts for rabbitmq-4

When scaling down, the order is inverted. The highest-numbered Pod will be stopped first. As soon as it has
finished terminating the now highest-numbered Pod is stopped. This procedure is repeated as long as the
desired number of replicas has not been reached.

Update procedure
During an update of an application with a StatefulSet the highest-numbered Pod will be the first to be
updated and only after a successful start the next Pod follows.

1. Highest-numbered Pod is stopped
2. New Pod (with new image tag) is started
3. If the new Pod successfully starts, the procedure is repeated for the second highest-numbered Pod
4. And so on

Note
This lab does not depend on other labs.

- acend gmbh

52 / 91

If the start of a new Pod fails, the update will be interrupted so that the architecture of your application
won’t break.

Dedicated persistent volumes
A very convenient feature is that unlike a Deployment a StatefulSet makes it possible to attach a different,
dedicated persistent volume to each of its Pods. This is done using a so-called VolumeClaimTemplate. This
spares you from defining identical Deployments with 1 replica each but different volumes.

Conclusion
The controllable and predictable behavior can be a perfect match for applications such as RabbitMQ or etcd,
as you need unique names for such application clusters.

Task 9.1.1: Create a StatefulSet
Create a file named sts_nginx-cluster.yaml with the following definition of a StatefulSet:

Create the StatefulSet:

To watch the pods’ progress, open a second console and execute the watch command:

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: nginx-cluster
spec:
 serviceName: "nginx"
 replicas: 1
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: REGISTRY-URL/acend/nginx-unprivileged:1.18-alpine
 ports:
 - containerPort: 8080
 name: nginx
 resources:
 limits:
 cpu: 40m
 memory: 64Mi
 requests:
 cpu: 10m
 memory: 32Mi

oc apply -f sts_nginx-cluster.yaml --namespace <namespace>

- acend gmbh

53 / 91

Task 9.1.2: Scale the StatefulSet
Scale the StatefulSet up:

You can again watch the pods’ progress like you did in the first task.

Task 9.1.3: Update the StatefulSet
In order to update the image tag in use in a StatefulSet, you can use the oc set image command. Set the
StatefulSet’s image tag to latest :

Task 9.1.4: Rollback
Imagine you just realized that switching to the latest image tag was an awful idea (because it is generally
not advisable). Rollback the change:

Task 9.1.5: Cleanup
As with every other OpenShift resource you can delete the StatefulSet with:

oc delete statefulset nginx-cluster --namespace <namespace>

Further information can be found in the Kubernetes’ StatefulSet documentation or this published article .

oc get pods --selector app=nginx -w --namespace <namespace>

Note
Friendly reminder that the oc get -w command will never end unless you terminate it with CTRL-c.

oc scale statefulset nginx-cluster --replicas=3 --namespace <namespace>

oc set image statefulset nginx-cluster nginx=REGISTRY-URL/acend/nginx-unprivileged:latest --namespace <namespace>

oc rollout undo statefulset nginx-cluster --namespace <namespace>

Warning
To avoid issues on your personal progress dashboard, we would advise not to delete the StatefulSet from
this lab

- acend gmbh

54 / 91

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://opensource.com/article/17/2/stateful-applications

9.2. DaemonSets
A DaemonSet is almost identical to a normal Deployment. The difference is that it makes sure that exactly
one Pod is running on every (or some specified) Node. When a new Node is added, the DaemonSet
automatically deploys a Pod on the new Node if its selector matches. When the DaemonSet is deleted, all
related Pods are deleted.

One obvious use case for a DaemonSet is some kind of agent or daemon to e.g. grab logs from each Node
of the cluster (e.g., Fluentd, Logstash or a Splunk forwarder).

More information about DaemonSet can be found in the documentation .

- acend gmbh

55 / 91

https://docs.openshift.com/container-platform/latest/nodes/jobs/nodes-pods-daemonsets.html

9.3. CronJobs and Jobs
Jobs are different from normal Deployments: Jobs execute a time-constrained operation and report the
result as soon as they are finished; think of a batch job. To achieve this, a Job creates a Pod and runs a
defined command. A Job isn’t limited to creating a single Pod, it can also create multiple Pods. When a Job is
deleted, the Pods started (and stopped) by the Job are also deleted.

For example, a Job is used to ensure that a Pod is run until its completion. If a Pod fails, for example because
of a Node error, the Job starts a new one. A Job can also be used to start multiple Pods in parallel.

More detailed information can be retrieved from the OpenShift documentation .

Task 9.3.1: Create a Job for a database dump
Similar to the task to import a database dump , we now want to create a dump of the running database, but
without the need of interactively logging into the Pod.

Let’s first look at the Job resource that we want to create.

Note
This lab depends on 7. Attaching a database or 8. Persistent storage.

- acend gmbh

56 / 91

https://docs.openshift.com/container-platform/latest/nodes/jobs/nodes-nodes-jobs.html
file:///attaching-a-database/#task-75-import-a-database-dump

The parameter .spec.template.spec.containers[0].image shows that we use the same image as the running
database. In contrast to the database Pod, we don’t start a database afterwards, but run a mysqldump

command, specified with .spec.template.spec.containers[0].command . To perform the dump, we use the
environment variables of the database deployment to set the hostname, user and password parameters of
the mysqldump command. The MYSQL_PASSWORD variable refers to the value of the secret, which is already used
for the database Pod. This way we ensure that the dump is performed with the same credentials.

Let’s create our Job: Create a file named job_database-dump.yaml with the content above and execute the
following command:

Check if the Job was successful:

apiVersion: batch/v1
kind: Job
metadata:
 name: database-dump
spec:
 template:
 spec:
 containers:
 - name: mariadb
 image: REGISTRY-URL/acend/mariadb-105:1
 command:
 - 'bash'
 - '-eo'
 - 'pipefail'
 - '-c'
 - >
 trap "echo Backup failed; exit 0" ERR;
 FILENAME=backup-${MYSQL_DATABASE}-`date +%Y-%m-%d_%H%M%S`.sql.gz;
 mysqldump --user=${MYSQL_USER} --password=${MYSQL_PASSWORD} --host=${MYSQL_HOST} --port=${MYSQL_PORT} --skip-
lock-tables --quick --add-drop-database --routines ${MYSQL_DATABASE} | gzip > /tmp/$FILENAME;
 echo "";
 echo "Backup successful"; du -h /tmp/$FILENAME;
 env:
 - name: MYSQL_DATABASE
 valueFrom:
 secretKeyRef:
 key: database-name
 name: mariadb
 - name: MYSQL_USER
 valueFrom:
 secretKeyRef:
 key: database-user
 name: mariadb
 - name: MYSQL_HOST
 value: mariadb
 - name: MYSQL_PORT
 value: "3306"
 - name: MYSQL_PASSWORD
 valueFrom:
 secretKeyRef:
 key: database-password
 name: mariadb
 resources:
 limits:
 cpu: 100m
 memory: 128Mi
 requests:
 cpu: 20m
 memory: 64Mi
 restartPolicy: Never

oc apply -f ./job_database-dump.yaml --namespace <namespace>

- acend gmbh

57 / 91

The executed Pod can be shown as follows:

To show all Pods belonging to a Job in a human-readable format, the following command can be used:

CronJobs
A CronJob is nothing else than a resource which creates a Job at a defined time, which in turn starts (as we
saw in the previous section) a Pod to run a command. Typical use cases are cleanup Jobs, which tidy up old
data for a running Pod, or a Job to regularly create and save a database dump as we just did during this lab.

The CronJob’s definition will remind you of the Deployment’s structure, or really any other control resource.
There’s most importantly the schedule specification in cron schedule format , some more things you could
define and then the Job’s definition itself that is going to be created by the CronJob:

Further information can be found in the OpenShift CronJob documentation .

oc describe jobs/database-dump --namespace <namespace>

oc get pods --namespace <namespace>

oc get pods --selector=job-name=database-dump --output=go-template="{{range .items}}{{.metadata.name}}{{end}}" --namesp
ace <namespace>

apiVersion: batch/v1
kind: CronJob
metadata:
 name: database-dump
spec:
 schedule: "5 4 * * *"
 concurrencyPolicy: "Replace"
 startingDeadlineSeconds: 200
 successfulJobsHistoryLimit: 3
 failedJobsHistoryLimit: 1
 jobTemplate:
 spec:
 template:
 spec:
 containers:
 - name: mariadb
 ...

- acend gmbh

58 / 91

https://crontab.guru/
https://docs.openshift.com/container-platform/latest/nodes/jobs/nodes-nodes-jobs.html

9.4. ConfigMaps
Similar to environment variables, ConfigMaps allow you to separate the configuration for an application from
the image. Pods can access those variables at runtime which allows maximum portability for applications
running in containers. In this lab, you will learn how to create and use ConfigMaps.

ConfigMap creation
A ConfigMap can be created using the oc create configmap command as follows:

Where the <data-source> can be a file, directory, or command line input.

Task 9.4.1: Java properties as ConfigMap
A classic example for ConfigMaps are properties files of Java applications which can’t be configured with
environment variables.

First, create a file called java.properties with the following content:

Now you can create a ConfigMap based on that file:

Verify that the ConfigMap was created successfully:

NAME DATA AGE
javaconfiguration 1 7s

Have a look at its content:

Which should yield output similar to this one:

oc create configmap <name> <data-source> --namespace <namespace>

key=value
key2=value2

oc create configmap javaconfiguration --from-file=./java.properties --namespace <namespace>

oc get configmaps --namespace <namespace>

oc get configmap javaconfiguration -o yaml --namespace <namespace>

- acend gmbh

59 / 91

Task 9.4.2: Attach the ConfigMap to a container
Next, we want to make a ConfigMap accessible for a container. There are basically the following possibilities
to achieve this :

ConfigMap properties as environment variables in a Deployment
Command line arguments via environment variables
Mounted as volumes in the container

In this example, we want the file to be mounted as a volume inside the container.

As in 8. Persistent storage, we can use the oc set volume command to achieve this:

This results in the addition of the following parts to the Deployment (check with oc get deploy example-web-app -o

yaml):

This means that the container should now be able to access the ConfigMap’s content in
/etc/config/java.properties . Let’s check:

apiVersion: v1
kind: ConfigMap
metadata:
 name: javaconfiguration
data:
 java.properties: |
 key=value
 key2=value2

Note
If you are using Windows and your shell uses the POSIX-to-Windows path conversion, remember to prepend
your command with MSYS_NO_PATHCONV=1 if the resulting mount path was mistakenly converted.

oc set volume deploy/example-web-app --add --configmap-name=javaconfiguration --mount-path=/etc/config --name=config-vo
lume --type configmap --namespace <namespace>

Note
This task doesn’t have any effect on the example application inside the container. It is for demonstration
purposes only.

 ...
 volumeMounts:
 - mountPath: /etc/config
 name: config-volume
 ...
 volumes:
 - configMap:
 defaultMode: 420
 name: javaconfiguration
 name: config-volume
 ...

- acend gmbh

60 / 91

https://docs.openshift.com/container-platform/latest/applications/config-maps.html

Like this, the property file can be read and used by the application inside the container. The image stays
portable to other environments.

Task 9.4.3: ConfigMap environment variables
Use a ConfigMap by populating environment variables into the container instead of a file.

oc exec <pod> --namespace <namespace> -- cat /etc/config/java.properties

Note
On Windows, you can use Git Bash with winpty oc exec -it <pod> --namespace <namespace> -- cat
//etc/config/java.properties.

key=value
key2=value2

- acend gmbh

61 / 91

https://docs.openshift.com/container-platform/latest/applications/config-maps.html#nodes-pods-configmaps-use-case-consuming-in-env-vars_config-maps

9.5. ResourceQuotas and LimitRanges
In this lab, we are going to look at ResourceQuotas and LimitRanges. As OpenShift users, we are most
certainly going to encounter the limiting effects that ResourceQuotas and LimitRanges impose.

ResourceQuotas
ResourceQuotas among other things limit the amount of resources Pods can use in a Namespace. They can
also be used to limit the total number of a certain resource type in a Project. In more detail, there are these
kinds of quotas:

Compute ResourceQuotas can be used to limit the amount of memory and CPU
Storage ResourceQuotas can be used to limit the total amount of storage and the number of
PersistentVolumeClaims, generally or specific to a StorageClass
Object count quotas can be used to limit the number of a certain resource type such as Services, Pods
or Secrets

Defining ResourceQuotas makes sense when the cluster administrators want to have better control over
consumed resources. A typical use case are public offerings where users pay for a certain guaranteed
amount of resources which must not be exceeded.

In order to check for defined quotas in your Namespace, simply see if there are any of type ResourceQuota:

To show in detail what kinds of limits the quota imposes:

For more details, have look into OpenShift’s documentation about resource quotas .

Requests and limits
As we’ve already seen, compute ResourceQuotas limit the amount of memory and CPU we can use in a
Project. Only defining a ResourceQuota, however is not going to have an effect on Pods that don’t define the
amount of resources they want to use. This is where the concept of limits and requests comes into play.

Limits and requests on a Pod, or rather on a container in a Pod, define how much memory and CPU this
container wants to consume at least (request) and at most (limit). Requests mean that the container will be
guaranteed to get at least this amount of resources, limits represent the upper boundary which cannot be
crossed. Defining these values helps OpenShift in determining on which Node to schedule the Pod because
it knows how many resources should be available for it.

Warning
For this lab to work it is vital that you use the namespace <username>-quota-test !

oc get resourcequota --namespace <namespace>-quota

oc describe resourcequota <quota-name> --namespace <namespace>-quota

Note

- acend gmbh

62 / 91

https://docs.openshift.com/container-platform/latest/applications/quotas/quotas-setting-per-project.html

Defining limits and requests on a Pod that has one container looks like this:

apiVersion: v1
kind: Pod
metadata:
 name: lr-demo
 namespace: lr-example
spec:
 containers:
 - name: lr-demo-ctr
 image: REGISTRY-URL/acend/nginx-unprivileged:latest
 resources:
 limits:
 memory: "200Mi"
 cpu: "700m"
 requests:
 memory: "200Mi"
 cpu: "700m"

You can see the familiar binary unit “Mi” is used for the memory value. Other binary (“Gi”, “Ki”, …) or
decimal units (“M”, “G”, “K”, …) can be used as well.

The CPU value is denoted as “m”. “m” stands for millicpu or sometimes also referred to as millicores where
"1000m" is equal to one core/vCPU/hyperthread.

Quality of service
Setting limits and requests on containers has yet another effect: It might change the Pod’s Quality of
Service class. There are three such QoS classes:

Guaranteed
Burstable
BestEffort

The Guaranteed QoS class is applied to Pods that define both limits and requests for both memory and CPU
resources on all their containers. The most important part is that each request has the same value as the
limit. Pods that belong to this QoS class will never be killed by the scheduler because of resources running
out on a Node.

The Burstable QoS class means that limits and requests on a container are set, but they are different. It is
enough to define limits and requests on one container of a Pod even though there might be more, and it
also only has to define limits and requests on memory or CPU, not necessarily both.

The BestEffort QoS class applies to Pods that do not define any limits and requests at all on any containers.
As its class name suggests, these are the kinds of Pods that will be killed by the scheduler first if a Node
runs out of memory or CPU. As you might have already guessed by now, if there are no BestEffort QoS Pods,
the scheduler will begin to kill Pods belonging to the class of Burstable. A Node hosting only Pods of class
Guaranteed will (theoretically) never run out of resources.

LimitRanges

Containers using more CPU time than what their limit allows will be throttled. Containers using more
memory than what they are allowed to use will be killed.

Note
If a container only defines its limits, OpenShift automatically assigns a request that matches the limit.

- acend gmbh

63 / 91

As you now know what limits and requests are, we can come back to the statement made above:

As we’ve already seen, compute ResourceQuotas limit the amount of memory and CPU we can use in a
Namespace. Only defining a ResourceQuota, however is not going to have an effect on Pods that don’t
define the amount of resources they want to use. This is where the concept of limits and requests comes
into play.

So, if a cluster administrator wanted to make sure that every Pod in the cluster counted against the
compute ResourceQuota, the administrator would have to have a way of defining some kind of default limits
and requests that were applied if none were defined in the containers. This is exactly what LimitRanges are
for.

Quoting the Kubernetes documentation , LimitRanges can be used to:

Enforce minimum and maximum compute resource usage per Pod or container in a Namespace
Enforce minimum and maximum storage requests per PersistentVolumeClaim in a Namespace
Enforce a ratio between request and limit for a resource in a Namespace
Set default request/limit for compute resources in a Namespace and automatically inject them to
containers at runtime

If for example a container did not define any requests or limits and there was a LimitRange defining the
default values, these default values would be used when deploying said container. However, as soon as
limits or requests were defined, the default values would no longer be applied.

The possibility of enforcing minimum and maximum resources and defining ResourceQuotas per Namespace
allows for many combinations of resource control.

Task 9.5.1: Namespace

Analyse the LimitRange in your Namespace (there has to be one, if not you are using the wrong
Namespace):

The command above should output this (name and Namespace will vary):

Name: ce01a1b6-a162-479d-847c-4821255cc6db
Namespace: eltony-quota-lab
Type Resource Min Max Default Request Default Limit Max Limit/Request Ratio
---- -------- --- --- --------------- ------------- -----------------------
Container memory - - 16Mi 32Mi -
Container cpu - - 10m 100m -

Check for the ResourceQuota in your Namespace (there has to be one, if not you are using the wrong
Namespace):

Warning
Remember to use the namespace <username>-quota-test , otherwise this lab will not work!

oc describe limitrange --namespace <namespace>-quota

oc describe quota --namespace <namespace>-quota

- acend gmbh

64 / 91

https://kubernetes.io/docs/concepts/policy/limit-range/

The command above will produce an output similar to the following (name and namespace may vary)

Name: lab-quota
Namespace: eltony-quota-lab
Resource Used Hard
-------- ---- ----
requests.cpu 0 100m
requests.memory 0 100Mi

Task 9.5.2: Default memory limit
Create a Pod using the stress image:

Apply this resource with:

Watch the Pod’s creation with:

You should see something like the following:

NAME READY STATUS RESTARTS AGE
stress2much 0/1 ContainerCreating 0 1s
stress2much 0/1 ContainerCreating 0 2s
stress2much 0/1 OOMKilled 0 5s
stress2much 1/1 Running 1 7s
stress2much 0/1 OOMKilled 1 9s
stress2much 0/1 CrashLoopBackOff 1 20s

apiVersion: v1
kind: Pod
metadata:
 name: stress2much
spec:
 containers:
 - command:
 - stress
 - --vm
 - "1"
 - --vm-bytes
 - 85M
 - --vm-hang
 - "1"
 image: REGISTRY-URL/acend/stress:latest
 imagePullPolicy: Always
 name: stress

oc apply -f pod_stress2much.yaml --namespace <namespace>-quota

Note
You have to actively terminate the following command pressing CTRL+c on your keyboard.

oc get pods --watch --namespace <namespace>-quota

- acend gmbh

65 / 91

The stress2much Pod was OOM (out of memory) killed. We can see this in the STATUS field. Another way to find
out why a Pod was killed is by checking its status. Output the Pod’s YAML definition:

Near the end of the output you can find the relevant status part:

So let’s look at the numbers to verify the container really had too little memory. We started the stress

command using the parameter --vm-bytes 85M which means the process wants to allocate 85 megabytes of
memory. Again looking at the Pod’s YAML definition with:

reveals the following values:

...
 resources:
 limits:
 cpu: 100m
 memory: 32Mi
 requests:
 cpu: 10m
 memory: 16Mi
...

These are the values from the LimitRange, and the defined limit of 32 MiB of memory prevents the stress

process of ever allocating the desired 85 MB.

Let’s fix this by recreating the Pod and explicitly setting the memory request to 85 MB.

First, delete the stress2much pod with:

Then create a new Pod where the requests and limits are set:

oc get pod stress2much --output yaml --namespace <namespace>-quota

 containerStatuses:
 - containerID: docker://da2473f1c8ccdffbb824d03689e9fe738ed689853e9c2643c37f206d10f93a73
 image: REGISTRY-URL/acend/stress:latest
 lastState:
 terminated:
 ...
 reason: OOMKilled
 ...

oc get pod stress2much --output yaml --namespace <namespace>-quota

oc delete pod stress2much --namespace <namespace>-quota

- acend gmbh

66 / 91

And apply this again with:

You should now see that the Pod is successfully running:

NAME READY STATUS RESTARTS AGE
stress 1/1 Running 0 25s

Task 9.5.3: Hitting the quota
Create another Pod, again using the stress image. This time our application is less demanding and only
needs 10 MB of memory (--vm-bytes 10M):

Create a new Pod resource with:

apiVersion: v1
kind: Pod
metadata:
 name: stress
spec:
 containers:
 - command:
 - stress
 - --vm
 - "1"
 - --vm-bytes
 - 85M
 - --vm-hang
 - "1"
 image: REGISTRY-URL/acend/stress:latest
 imagePullPolicy: Always
 name: stress
 resources:
 limits:
 cpu: 100m
 memory: 100Mi
 requests:
 cpu: 10m
 memory: 85Mi

oc apply -f pod_stress.yaml --namespace <namespace>-quota

Note
Remember, if you only set the limit, the request will be set to the same value.

- acend gmbh

67 / 91

We are immediately confronted with an error message:

Error from server (Forbidden): pods "overbooked" is forbidden: exceeded quota: lab-quota, requested: memory=16Mi, used:
 memory=85Mi, limited: memory=100Mi

The default request value of 16 MiB of memory that was automatically set on the Pod lets us hit the quota
which in turn prevents us from creating the Pod.

Let’s have a closer look at the quota with:

which should output the following YAML definition:

...
 status:
 hard:
 cpu: 100m
 memory: 100Mi
 used:
 cpu: 20m
 memory: 80Mi
...

The most interesting part is the quota’s status which reveals that we cannot use more than 100 MiB of
memory and that 80 MiB are already used.

Fortunately, our application can live with less memory than what the LimitRange sets. Let’s set the request
to the remaining 10 MiB:

apiVersion: v1
kind: Pod
metadata:
 name: overbooked
spec:
 containers:
 - command:
 - stress
 - --vm
 - "1"
 - --vm-bytes
 - 10M
 - --vm-hang
 - "1"
 image: REGISTRY-URL/acend/stress:latest
 imagePullPolicy: Always
 name: overbooked

oc apply -f pod_overbooked.yaml --namespace <namespace>-quota

oc get quota --output yaml --namespace <namespace>-quota

- acend gmbh

68 / 91

And apply with:

Even though the limits of both Pods combined overstretch the quota, the requests do not and so the Pods
are allowed to run.

apiVersion: v1
kind: Pod
metadata:
 name: overbooked
spec:
 containers:
 - command:
 - stress
 - --vm
 - "1"
 - --vm-bytes
 - 10M
 - --vm-hang
 - "1"
 image: REGISTRY-URL/acend/stress:latest
 imagePullPolicy: Always
 name: overbooked
 resources:
 limits:
 cpu: 100m
 memory: 50Mi
 requests:
 cpu: 10m
 memory: 10Mi

oc apply -f pod_overbooked.yaml --namespace <namespace>-quota

- acend gmbh

69 / 91

9.6. Init containers
A Pod can have multiple containers running apps within it, but it can also have one or more init containers,
which are run before the app container is started.

Init containers are exactly like regular containers, except:

Init containers always run to completion.
Each init container must complete successfully before the next one starts.

Check out the Init Containers documentation for more details.

Task 9.6.1: Add an init container
In 7. Attaching a database you created the example-web-app application. In this task, you are going to add an
init container which checks if the MariaDB database is ready to be used before actually starting your
example application.

Edit your existing example-web-app Deployment by changing your local deployment_example-web-app.yaml . Add the
init container into the existing Deployment (same indentation level as containers):

And then apply again with:

Let’s see what has changed by analyzing your newly created example-web-app Pod with the following command
(use oc get pod or auto-completion to get the Pod name):

You see the new init container with the name wait-for-db :

...
 spec:
 initContainers:
 - name: wait-for-db
 image: REGISTRY-URL/acend/busybox:1.28
 command:
 [
 "sh",
 "-c",
 "until nslookup mariadb.$(cat /var/run/secrets/kubernetes.io/serviceaccount/namespace).svc.cluster.local;
 do echo waiting for mydb; sleep 2; done",
]
...

oc apply -f deployment_example-web-app.yaml --namespace <namespace>

Note
This obviously only checks if there is a DNS Record for your MariaDB Service and not if the database is
ready. But you get the idea, right?

oc describe pod <pod> --namespace <namespace>

- acend gmbh

70 / 91

https://docs.openshift.com/container-platform/latest/nodes/containers/nodes-containers-init.html

...
Init Containers:
 wait-for-db:
 Container ID: docker://77e6e309c88cfe62d03ed97e8fae20704bbf547a1e717a8f699ba79d9879cca2
 Image: busybox
 Image ID: docker-pullable://busybox@sha256:141c253bc4c3fd0a201d32dc1f493bcf3fff003b6df416dea4f41046e0f37d47
 Port: <none>
 Host Port: <none>
 Command:
 sh
 -c
 until nslookup mariadb.$(cat /var/run/secrets/kubernetes.io/serviceaccount/namespace).svc.cluster.local; do echo
waiting for mydb; sleep 2; done
 State: Terminated
 Reason: Completed
 Exit Code: 0
 Started: Tue, 10 Nov 2020 21:00:24 +0100
 Finished: Tue, 10 Nov 2020 21:02:52 +0100
 Ready: True
 Restart Count: 0
 Environment: <none>
 Mounts:
 /var/run/secrets/kubernetes.io/serviceaccount from default-token-xz2b7 (ro)
...

The init container has the State: Terminated and an Exit Code: 0 which means it was successful. That’s what
we wanted, the init container was successfully executed before our main application.

You can also check the logs of the init container with:

Which should give you something similar to:

Server: 10.43.0.10
Address 1: 10.43.0.10 kube-dns.kube-system.svc.cluster.local

Name: mariadb.acend-test.svc.cluster.local
Address 1: 10.43.243.105 mariadb.acend-test.svc.cluster.local

Deployment hooks on OpenShift
A similar concept are the so-called pre and post deployment hooks. Those hooks basically give the
possibility to execute Pods before and after a deployment is in progress.

Check out the official documentation for further information.

oc logs -c wait-for-db <pod> --namespace <namespace>

- acend gmbh

71 / 91

https://docs.openshift.com/container-platform/latest/applications/deployments/deployment-strategies.html

9.7. Sidecar containers
Let’s first have another look at the Pod’s description on the Kubernetes documentation page :

A Pod (as in a pod of whales or pea pod) is a group of one or more containers (such as Docker containers),
with shared storage/network, and a specification for how to run the containers. A Pod’s contents are
always co-located and co-scheduled, and run in a shared context. A Pod models an application-specific
“logical host” - it contains one or more application containers which are relatively tightly coupled — in a
pre-container world, being executed on the same physical or virtual machine would mean being executed
on the same logical host. The shared context of a Pod is a set of Linux namespaces, cgroups, and
potentially other facets of isolation - the same things that isolate a Docker container. Within a Pod’s
context, the individual applications may have further sub-isolations applied.

A sidecar container is a utility container in the Pod. Its purpose is to support the main container. It is
important to note that the standalone sidecar container does not serve any purpose, it must be paired with
one or more main containers. Generally, sidecar containers are reusable and can be paired with numerous
types of main containers.

In a sidecar pattern, the functionality of the main container is extended or enhanced by a sidecar container
without strong coupling between the two. Although it is always possible to build sidecar container
functionality into the main container, there are several benefits with this pattern:

Different resource profiles, i.e. independent resource accounting and allocation
Clear separation of concerns at packaging level, i.e. no strong coupling between containers
Reusability, i.e., sidecar containers can be paired with numerous “main” containers
Failure containment boundary, making it possible for the overall system to degrade gracefully
Independent testing, packaging, upgrade, deployment and if necessary rollback

Task 9.7.1: Add a Prometheus MySQL exporter as a
sidecar
In 8. Persistent storage you created a MariaDB deployment. In this task you are going to add the
Prometheus MySQL exporter to it.

Change the existing mariadb Deployment using by first editing your local mariadb.yaml file. Add a new
(sidecar) container into your Deployment:

And add a new (sidecar) container to it:

and then apply the change with:

 containers:
 - ...
 - image: REGISTRY-URL/acend/mysqld-exporter:latest-2023.06.17-00.13.04
 name: mysqld-exporter
 env:
 - name: MYSQL_DATABASE_ROOT_PASSWORD
 valueFrom:
 secretKeyRef:
 key: database-root-password
 name: mariadb
 - name: DATA_SOURCE_NAME
 value: root:$(MYSQL_DATABASE_ROOT_PASSWORD)@(localhost:3306)/
 ...

- acend gmbh

72 / 91

https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://github.com/prometheus/mysqld_exporter

Your Pod now has two running containers. Verify this with:

The output should look similar to this:

NAME READY STATUS RESTARTS AGE
mariadb-65559644c9-cdjjk 2/2 Running 0 5m35s

Note the READY column which shows you 2 ready containers.

You can get the logs from the mysqld-exporter with:

Which gives you an output similar to this:

time="2020-05-10T11:31:02Z" level=info msg="Starting mysqld_exporter (version=0.12.1, branch=HEAD, revision=48667bf7c3b
438b5e93b259f3d17b70a7c9aff96)" source="mysqld_exporter.go:257"
time="2020-05-10T11:31:02Z" level=info msg="Build context (go=go1.12.7, user=root@0b3e56a7bc0a, date=20190729-12:35:58)
" source="mysqld_exporter.go:258"
time="2020-05-10T11:31:02Z" level=info msg="Enabled scrapers:" source="mysqld_exporter.go:269"
time="2020-05-10T11:31:02Z" level=info msg=" --collect.global_variables" source="mysqld_exporter.go:273"
time="2020-05-10T11:31:02Z" level=info msg=" --collect.slave_status" source="mysqld_exporter.go:273"
time="2020-05-10T11:31:02Z" level=info msg=" --collect.global_status" source="mysqld_exporter.go:273"
time="2020-05-10T11:31:02Z" level=info msg=" --collect.info_schema.query_response_time" source="mysqld_exporter.go:273"
time="2020-05-10T11:31:02Z" level=info msg=" --collect.info_schema.innodb_cmp" source="mysqld_exporter.go:273"
time="2020-05-10T11:31:02Z" level=info msg=" --collect.info_schema.innodb_cmpmem" source="mysqld_exporter.go:273"
time="2020-05-10T11:31:02Z" level=info msg="Listening on :9104" source="mysqld_exporter.go:283"

By using the port-forward subcommand, you can even have a look at the Prometheus metrics:

And then use curl to check the mysqld_exporter metrics with:

oc apply -f mariadb.yaml --namespace <namespace>

oc get pod --namespace <namespace>

oc logs <pod> -c mysqld-exporter --namespace <namespace>

oc port-forward <pod> 9104 --namespace <namespace>

curl http://localhost:9104/metrics

- acend gmbh

73 / 91

10. Deployment strategies

In this lab, we are going to have a look at the different Deployment strategies.

This document should give you a good start. For more details, have a look at the examples or use this demo
in which the different strategies are implemented as Helm charts.

Task 10.1: Apply deployment strategies
Apply some deployment strategies to the example from the Scaling .

Note
This lab is optional.

- acend gmbh

74 / 91

https://www.cncf.io/wp-content/uploads/2018/03/CNCF-Presentation-Template-K8s-Deployment.pdf
https://github.com/ContainerSolutions/k8s-deployment-strategies
https://github.com/acend/deployment-strategies-demo
file:///scaling

11. Helm
Helm is a Cloud Native Foundation project to define, install and manage applications in Kubernetes.

tl;dr
Helm is a Package Manager for Kubernetes

package multiple K8s resources into a single logical deployment unit
… but it’s not just a Package Manager

Helm is a Deployment Management for Kubernetes

do a repeatable deployment
manage dependencies: reuse and share
manage multiple configurations
update, rollback and test application deployments

11.1. Helm overview
Ok, let’s start with Helm. First, you have to understand the following 3 Helm concepts: Chart, Repository
and Release.

A Chart is a Helm package. It contains all of the resource definitions necessary to run an application, tool,
or service inside of a Kubernetes cluster. Think of it like the Kubernetes equivalent of a Homebrew formula,
an Apt dpkg, or a Yum RPM file.

A Repository is the place where charts can be collected and shared. It’s like Perl’s CPAN archive or the
Fedora Package Database, but for Kubernetes packages.

A Release is an instance of a chart running in a Kubernetes cluster. One chart can often be installed many
times in the same cluster. Each time it is installed, a new release is created. Consider a MySQL chart. If you
want two databases running in your cluster, you can install that chart twice. Each one will have its own
release, which will in turn have its own release name.

With these concepts in mind, we can now explain Helm like this:

Helm installs charts into Kubernetes, creating a new release for each installation. To find new charts, you
can search Helm chart repositories.

- acend gmbh

75 / 91

https://github.com/helm/helm
https://www.cncf.io/

11.2. CLI installation
This guide shows you how to install the helm CLI tool. helm can be installed either from source or from pre-
built binary releases. We are going to use the pre-built releases. helm binaries can be found on Helm’s
release page for the usual variety of operating systems.

Task 11.2.1: Install CLI
Install the CLI for your Operating System

1. Download the latest release
2. Unpack it (e.g. tar -zxvf <filename>)
3. Copy to the correct location

Linux: Find the helm binary in the unpacked directory and move it to its desired destination (e.g. mv

linux-amd64/helm ~/.local/bin/)
The desired destination should be listed in your $PATH environment variable (echo $PATH)

macOS: Find the helm binary in the unpacked directory and move it to its desired destination (e.g.
mv darwin-amd64/helm ~/bin/)

The desired destination should be listed in your $PATH environment variable (echo $PATH)
Windows: Find the helm binary in the unpacked directory and move it to its desired destination

The desired destination should be listed in your $PATH environment variable (echo $PATH)

Task 11.2.2: Verify
To verify, run the following command and check if Version is what you expected:

The output is similar to this:

From here on you should be able to run the client.

Warning
If you do this training in our acend web based environment, no installation is required.

helm version

version.BuildInfo{Version:"v3.10.1", GitCommit:"9f88ccb6aee40b9a0535fcc7efea6055e1ef72c9", GitTreeState:"clean", GoVers
ion:"go1.18.7"}

- acend gmbh

76 / 91

https://github.com/helm/helm/releases
https://github.com/helm/helm/releases

11.3. Generic Chart setup
In the following labs we are going to create our first Helm Charts with the help of Baloise’s Generic Chart
and deploy them.

Baloise’s Generic Helm Chart is meant as a template and easy starting point to deploy common Kubernetes
resource manifests. By declaring the Generic Chart as a dependency of your own Chart, you can make use
of all the features the Generic Chart offers.

Task 11.3.1: Setup the dependency
So first, let’s create your own Chart. Open your favorite terminal and make sure you’re in the workspace for
this lab, e.g. cd ~/<workspace-kubernetes-training> :

You will now find a mychart directory with the newly created chart. It already is a valid and fully functional
Chart which deploys an nginx instance. However, instead of using these generated templates and values,
we want to use the Generic Chart. Change into your Chart’s directory and remove the generated templates:

Before we declare the Generic Chart as a dependency, have a look at the generated Chart.yaml using your
favorite text editor:

As you can see, the Chart.yaml defines the metadata for your chart, so feel free to change anything.

Also note that the version and appVersion values are different. This is because the version field refers to the
Helm Chart’s version while the appVersion refers to the application’s version that’s deployed using this Chart.

In order to declare the Generic Chart as a dependency, add the following lines to your Chart.yaml :

Save and close the file. You can check if you added the dependency correctly be executing:

helm create mychart

cd mychart/
rm -r templates/

vim Chart.yaml

dependencies:
 - name: generic-chart
 version: 3.13.0
 repository: https://CHART-REPOSITORY-URL/shared/release/
 alias: first-example-app

helm dependency list

- acend gmbh

77 / 91

Above command should show you the dependency:

helm dependency list
NAME VERSION REPOSITORY STATUS
generic-chart 3.13.0 https://CHART-REPOSITORY-URL/shared/release/ missing

Note the STATUS field and its missing value. This is because the dependency has not yet been downloaded.
Let’s change this, execute:

Note that helm dependency list now shows ok under STATUS and the charts/ directory contains a gzipped
tarball.

helm dependency update

- acend gmbh

78 / 91

11.4. A first example using the Generic Chart
You’re now all set to begin with a first example!

Task 11.4.1: Create a values.yaml file
Still inside your mychart Helm Chart directory, open the already existing values.yaml file. Inside you’ll find a
host of defined parameters. Delete them all.

Instead, fill in the following content:

Task 11.4.2: A first test
Before applying anything to the cluster, you should test if the current values have the desired effect. In
order to do so, execute the following command:

Executing above command will output the rendered templates from the Generic Chart with the values you
defined inside values.yaml . Check what would be created and if the values are correct.

Task 11.4.3: Install the chart

first-example-app:
 replicaCount: 1
 image:
 repository: REGISTRY-URL/example/nginx-sample
 tag: latest
 pullPolicy: IfNotPresent
 ingress:
 controller: Route
 clusterName: CLUSTER-NAME
 network:
 http:
 servicePort: 8080
 ingress:
 clusterName: CLUSTER-NAME
 readinessProbe:
 httpGet:
 path: /
 port: 8080
 initialDelaySeconds: 5
 timeoutSeconds: 1
 resources:
 requests:
 cpu: 10m
 memory: 16Mi
 limits:
 cpu: 200m
 memory: 32Mi

Note
Don’t forget to replace <username>.

helm template my-first-release-<username> .

- acend gmbh

79 / 91

If you are satisfied with the output, install the release on the cluster:

You should get the following output:

NAME: my-first-release-<username>
LAST DEPLOYED: Tue Nov 22 16:40:01 2022
NAMESPACE: <namespace>
STATUS: deployed
REVISION: 1
TEST SUITE: None

Congratulations! You successfully deployed your first app using Helm!

You should now see a freshly created pod and a route inside your namespace. Check the route’s URL and
open it in your browser. A mountainous view and welcome message should greet you.

Note
Don’t forget to replace <username> and <namespace>.

helm install my-first-release-<username> . --namespace <namespace>

- acend gmbh

80 / 91

11.5. Generic Chart usage
You have now seen how to set up and use the Generic Chart. Now it’s your turn!

Task 11.5.1: Setup
Repeat the steps from 11.3. Generic Chart setup in order to create a new Chart.

Task 11.5.2: example-web-app
Implement the example-web-app application from lab 5. Scaling using the Generic Chart.

Task 11.5.3: Your own applications
Do you have applications of your own? Deploy them using the Generic Chart!

Note
Note the alias: line inside Chart.yaml . You can change this value to whatever you’d like, but you need to
use the same name as first line inside your values.yaml !

This is also how you can use the Generic Chart multiple times if you have more than one app/component.

Note
Have a look at the Chart’s documentation in its git repository or in the Baloise documentation site for all the
available values.

- acend gmbh

81 / 91

12. Kustomize

Kustomize is a tool to manage YAML configurations for Kubernetes objects in a declarative and reusable
manner. In this lab, we will use Kustomize to deploy the same app for two different environments.

Installation
Kustomize can be used in two different ways:

As a standalone kustomize binary, downloadable from kubernetes.io
With the parameter --kustomize or -k in certain oc subcommands such as apply or create

Usage
The main purpose of Kustomize is to build configurations from a predefined file structure (which will be
introduced in the next section):

The same can be achieved with oc :

The next step is to apply this configuration to the OpenShift cluster:

Or in one oc command with the parameter -k instead of -f :

Task 12.1: Prepare a Kustomize config

Note
This lab is optional.

Note
You might get a different behaviour depending on which variant you use. The reason for this is that the
version built into oc is usually older than the standalone binary.

kustomize build <dir>

oc kustomize <dir>

kustomize build <dir> | oc apply -f -

oc apply -k <dir>

- acend gmbh

82 / 91

https://kustomize.io/
https://kubectl.docs.kubernetes.io/installation/kustomize/

We are going to deploy a simple application:

The Deployment starts an application based on nginx
A Service exposes the Deployment
The application will be deployed for two different example environments, integration and production

Kustomize allows inheriting Kubernetes configurations. We are going to use this to create a base
configuration and then override it for the different environments. Note that Kustomize does not use
templating. Instead, smart patch and extension mechanisms are used on plain YAML manifests to keep
things as simple as possible.

Get the example config
Find the needed resource files inside the folder content/en/docs/kustomize/kustomize of the techlab github
repository. Clone the repository or get the content as zip

Change to the folder content/en/docs/kustomize/kustomize to execute the kustomize commands.

File structure
The structure of a Kustomize configuration typically looks like this:

Base
Let’s have a look at the base directory first which contains the base configuration. There’s a deployment.yaml

with the following content:

Note
Commands for git checkout and folder switch:

git clone https://github.com/acend/kubernetes-basics-training.git
cd kubernetes-basics-training/content/en/docs/kustomize/kustomize/

.
├── base
│ ├── deployment.yaml
│ ├── kustomization.yaml
│ └── service.yaml
└── overlays
 ├── production
 │ ├── deployment-patch.yaml
 │ ├── kustomization.yaml
 │ └── service-patch.yaml
 └── staging
 ├── deployment-patch.yaml
 ├── kustomization.yaml
 └── service-patch.yaml

- acend gmbh

83 / 91

https://github.com/acend/kubernetes-basics-training
https://github.com/acend/kubernetes-basics-training/archive/refs/heads/main.zip

There’s also a Service for our Deployment in the corresponding base/service.yaml :

And there’s an additional base/kustomization.yaml which is used to configure Kustomize:

It references the previous manifests service.yaml and deployment.yaml and makes them part of our base
configuration.

Overlays
Now let’s have a look at the other directory which is called overlays . It contains two subdirectories staging

and production which both contain a kustomization.yaml with almost the same content.

overlays/staging/kustomization.yaml :

apiVersion: apps/v1
kind: Deployment
metadata:
 name: kustomize-app
spec:
 selector:
 matchLabels:
 app: kustomize-app
 template:
 metadata:
 labels:
 app: kustomize-app
 spec:
 containers:
 - name: kustomize-app
 image: quay.io/acend/example-web-go
 env:
 - name: APPLICATION_NAME
 value: app-base
 command:
 - sh
 - -c
 - |-
 set -e
 /bin/echo "My name is $APPLICATION_NAME"
 /usr/local/bin/go
 ports:
 - name: http
 containerPort: 80
 protocol: TCP

apiVersion: v1
kind: Service
metadata:
 name: kustomize-app
spec:
 ports:
 - port: 80
 targetPort: 80
 selector:
 app: kustomize-app

resources:
 - service.yaml
 - deployment.yaml

- acend gmbh

84 / 91

overlays/production/kustomization.yaml :

Only the first key nameSuffix differs.

In both cases, the kustomization.yaml references our base configuration. However, the two directories contain
two different deployment-patch.yaml files which patch the deployment.yaml from our base configuration.

overlays/staging/deployment-patch.yaml :

overlays/production/deployment-patch.yaml :

nameSuffix: -staging
bases:
 - ../../base
patchesStrategicMerge:
 - deployment-patch.yaml
 - service-patch.yaml

nameSuffix: -production
bases:
 - ../../base
patchesStrategicMerge:
 - deployment-patch.yaml
 - service-patch.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: kustomize-app
spec:
 selector:
 matchLabels:
 app: kustomize-app-staging
 template:
 metadata:
 labels:
 app: kustomize-app-staging
 spec:
 containers:
 - name: kustomize-app
 env:
 - name: APPLICATION_NAME
 value: kustomize-app-staging

- acend gmbh

85 / 91

The main difference here is that the environment variable APPLICATION_NAME is set differently. The app label
also differs because we are going to deploy both Deployments into the same Namespace.

The same applies to our Service. It also comes in two customizations so that it matches the corresponding
Deployment in the same Namespace.

overlays/staging/service-patch.yaml :

overlays/production/service-patch.yaml :

Prepare the files as described above in a local directory of your choice.

Task 12.2: Deploy with Kustomize
We are now ready to deploy both apps for the two different environments. For simplicity, we will use the
same Namespace.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: kustomize-app
spec:
 selector:
 matchLabels:
 app: kustomize-app-production
 template:
 metadata:
 labels:
 app: kustomize-app-production
 spec:
 containers:
 - name: kustomize-app
 env:
 - name: APPLICATION_NAME
 value: kustomize-app-production

apiVersion: v1
kind: Service
metadata:
 name: kustomize-app
spec:
 selector:
 app: kustomize-app-staging

apiVersion: v1
kind: Service
metadata:
 name: kustomize-app
spec:
 selector:
 app: kustomize-app-production

Note
All files mentioned above are also directly accessible from GitHub .

- acend gmbh

86 / 91

https://github.com/acend/kubernetes-basics-training/tree/master/content/en/docs/12/kustomize

service/kustomize-app-staging created
deployment.apps/kustomize-app-staging created

As you can see, we now have two deployments and services deployed. Both of them use the same base
configuration. However, they have a specific configuration on their own as well.

Let’s verify this. Our app writes a corresponding log entry that we can use for analysis:

NAME READY STATUS RESTARTS AGE
kustomize-app-production-74c7bdb7d-8cccd 1/1 Running 0 2m1s
kustomize-app-staging-7967885d5b-qp6l8 1/1 Running 0 5m33s

My name is kustomize-app-staging

My name is kustomize-app-production

Further information
Kustomize has more features of which we just covered a couple. Please refer to the docs for more
information.

Kustomize documentation: https://kubernetes-sigs.github.io/kustomize/
API reference: https://kubernetes-sigs.github.io/kustomize/api-reference/
Another kustomization.yaml reference: https://kubectl.docs.kubernetes.io/pages/reference/kustomize.html

oc apply -k overlays/staging --namespace <namespace>

oc apply -k overlays/production --namespace <namespace>

service/kustomize-app-production created
deployment.apps/kustomize-app-production created

oc get pods --namespace <namespace>

oc logs kustomize-app-staging-7967885d5b-qp6l8

oc logs kustomize-app-production-74c7bdb7d-8cccd

- acend gmbh

87 / 91

https://kubernetes-sigs.github.io/kustomize/
https://kubernetes-sigs.github.io/kustomize/api-reference/
https://kubectl.docs.kubernetes.io/pages/reference/kustomize.html

Examples: https://github.com/kubernetes-sigs/kustomize/tree/master/examples
- acend gmbh

88 / 91

https://github.com/kubernetes-sigs/kustomize/tree/master/examples

13. Kubernetes and OpenShift differences

Even though OpenShift is based on Kubernetes, there are some important differences. As a concluding lab,
we are going to have a look at these differences.

Life cycle and versions
Red Hat releases a new OpenShift 4 release every six months, as is the case with Kubernetes. The
important difference however is that the latest OpenShift release is always based on the second latest
Kubernetes release.

Keep this in mind especially when using Kubernetes’ documentation e.g. about some resource type.

You can find out more about OpenShift’s life cycle policy on this page .

Resource types
OpenShift extends the Kubernetes API to support certain additional resource types.

Namespaces and Projects
In 2. First steps you created your first Project on OpenShift. You won’t find the concept of a “Project” in
Kubernetes except in other Kubernetes distributions, specifically in Rancher.

A Project in OpenShift is based on the Namespace resource type. When creating a Project in OpenShift, a
Namespace with the exact same name is created in the background.

The probably only reason for the Project resource type to exist is that OpenShift provides additional
administrative controls for Projects. OpenShift users can, e.g., be prevented from creating their own
Namespaces/Projects .

Ingresses and Routes
Ingresses and Routes enable you to make an application reachable to the outside of OpenShift. They
contain the configuration needed and signal the platform that a certain service needs to be accessible to
the outside world.

Red Hat introduced the concept of Routes in OpenShift 3.0 and still uses it up until now. Support for the
Ingress resource type was introduced in OpenShift 3.10 which means that you can use both Routes and
Ingresses as you see fit. Of course both have their advantages and disadvantages.

One of the obvious advantages of the Ingress resource type is its compatibility with other Kubernetes
distributions. However, different kinds of Ingress controllers support different features making this
statement semisolid. One of the obvious advantages of using Routes is that they’re easy to create using the

Note
This lab is optional.

Note
Rancher’s and OpenShift’s concepts of a project have nothing in common.

- acend gmbh

89 / 91

https://access.redhat.com/support/policy/updates/openshift/
https://rancher.com/docs/rancher/v2.x/en/cluster-admin/projects-and-namespaces/#about-projects
https://docs.openshift.com/container-platform/latest/rest_api/project_apis/project-apis-index.html
https://docs.openshift.com/container-platform/latest/applications/projects/configuring-project-creation.html#disabling-project-self-provisioning_configuring-project-creation
https://docs.openshift.com/container-platform/3.10/release_notes/ocp_3_10_release_notes.html#ocp-310-support-for-kubernetes-ingress-objects

oc expose command.

Task 13.1: Create an Ingress resource
In 5. Scaling you exposed the example-web-app application via Route using the oc expose command.

Expose the application using an Ingress resource. It’s best to not delete the existing Route, so you can
compare them. Bear in mind that you need to use another hostname in that case.

Solution
Your Ingress resource should look similar to this:

Deployments and DeploymentConfigs
OpenShift introduced the concept of DeploymentConfigs which later got introduced to upstream Kubernetes
as Deployments. The reason they don’t have the same name is because Deployments lack some features
that DeploymentConfigs offer. It’s advisable however to use Deployments wherever possible as they’re
compatible with other Kubernetes distributions where DeploymentConfigs are only supported on OpenShift.

The OpenShift documentation offers a detailed explanation of the differences. The features additionally
offered by DeploymentConfigs can be summarized as automation features to e.g. automatically trigger a
new deployment when the upstream image is updated.

ImageStreams
One of the reasons Kubernetes Deployments cannot support the missing automation features is because in
OpenShift, they are based on other resource types like the ImageStream. Kubernetes has not yet adopted a
similar resource type.

ImageStreams are references to an actual image in an image registry. They can be configured to
periodically check if the referenced image has been updated in order to trigger builds or deployments. More

Note
In OpenShift, creating an Ingress resource leads to the creation of a corresponding Route in the same
Namespace.

Note
Make use of the Kubernetes documentation about Ingress resources.

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: example-web-app
spec:
 rules:
 - host: <hostname>
 http:
 paths:
 - path: /
 pathType: Prefix
 backend:
 service:
 name: example-web-app
 port:
 number: 5000

- acend gmbh

90 / 91

https://docs.openshift.com/container-platform/latest/applications/deployments/what-deployments-are.html

details can be found in OpenShift’s documentation .

BuildConfigs and Builds
You already encountered these resource types in 3. Deploying a container image. BuildConfigs and Builds
make it possible to build a container image on OpenShift instead of relying on an external tool.

- acend gmbh

91 / 91

https://docs.openshift.com/container-platform/latest/openshift_images/images-understand.html#images-imagestream-use_images-understand

	Setup
	1. Web terminal
	2. Local usage
	3. Other ways to work with OpenShift

	Labs
	1. Introduction
	2. First steps
	3. Deploying a container image
	4. Exposing a service
	5. Scaling
	6. Troubleshooting
	7. Attaching a database
	8. Persistent storage
	9. Additional concepts
	10. Deployment strategies
	11. Helm
	12. Kustomize
	13. Kubernetes and OpenShift differences

