- acend gmbh

Setup

Setup instructions

This training depends on oc , the OpenShift command-line interface.

You have the choice of either using OpenShift's web terminal or installing oc locally.

If you prefer to not install anything on your computer, follow the instructions on the 1. Web terminal page.
The 2. Local usage chapter explains how to install oc for the respective operating system.

Also have a look at the 3. Other ways to work with OpenShift, which is, however, totally optional.

In case you’ve already installed oc, please make sure you have an up-to-date version.

1/91

- acend gmbh

1. Web terminal

Using OpenShift’'s web terminal might be more convenient for you as it doesn’t require you to install oc
locally on your computer.

Note

If you do change your mind, head right over to 2. Local usage.

Task 1.1: Login on the web console

First of all, open your browser. Then, log in on OpenShift’s web console using the URL and credentials
provided by your trainer.

Task 1.2: Initialize terminal

Make sure to create a dedicated project for the web terminal!

In OpenShift’s web console:

Click on the terminal icon on the upper right

Choose to create a new project

Name your project <username>-terminal where <username> is the username given to you during this training
Click Start

PwnNH

2/91

- acend gmbh

Red Hat
OpenShift

Getting Started

+

Initialize terminal

Project

Project name

Task 1.3: Verification

After the initial setup, you're presented with a web terminal. Tools like oc are already installed and you're
also already logged in.

You can check this by executing the following command:

oc whoami

You're now ready to go!

The terminal project is only meant to be used for the web terminal resources. Always check that you do not
use the terminal namespace for the other labs!

3/91

- acend gmbh

Next steps

If you're interested, have a look at the 3. Other ways to work with OpenShift, which is however totally
optional.

When you're ready to go, head on over to the labs and begin with the training!

4/91

file:///docs/

- acend gmbh

2. Local usage

As the labs of this training will be done in your company’s environment, please follow the company-specific
instructions on how to set up your local installation.

After installing oc, follow the instructions on 2.1. Console login in order to log in.

2.1. Console login

Task 2.1.1: Login on the web console

First of all, open your browser. Then, log in on OpenShift’s web console using the URL and credentials
provided by your trainer.

Task 2.1.2: Login on the command line

In order to log in on the command line, copy the login command from the web console.

To do that, open the Web Console and click on your username that you see at the top right, then choose
Copy Login Command.

© © developer «

Copy Login Command

Log out

A new tab or window will open in your browser.

Note
ou might need to log in again.

The page now displays a link Display token. Click on it and copy the command under Log in with this
token.

Now paste the copied command on the command line.

Task 2.1.3: Verify login

If you now execute oc version you should see something like this (your output may vary):

Client Version: 4.11.2
Kustomize Version: v4.5.4
Kubernetes Version: v1.24.0+dc5a2fd

5/91

- acend gmbh

First steps with oc

The oc binary has many subcommands. Invoke oc --help (or simply -h) to get a list of all subcommands; oc
<subcommand> --help gives you detailed help about a subcommand.

Next steps

If you're interested, have a look at the 3. Other ways to work with OpenShift, which is however totally
optional.

When you're ready to go, head on over to the labs and begin with the training!

6/91

file:///docs/

- acend gmbh

3. Other ways to work with OpenShift

Other ways to work with OpenShift

If you don’t have access to a running OpenShift development environment (anymore), there are several
options to get one.

e OpenShift Developer Sandbox : 30 days of no-cost access to a shared cluster on OpenShift
e OpenShift Local : A local OpenShift environmennt running on your machine

¢ OKD single node installation : OKD (OpenShift community edition) single node installation

Next steps

When you're ready to go, head on over to the labs and begin with the training!

7/91

https://developers.redhat.com/developer-sandbox
https://developers.redhat.com/products/openshift-local/overview
https://docs.okd.io/latest/installing/installing_sno/install-sno-preparing-to-install-sno.html
file:///docs/

- acend gmbh

Labs

The purpose of these labs is to convey OpenShift basics by providing hands-on tasks for people. OpenShift
will allow you to deploy and deliver your software packaged as containers in an easy, straightforward way.

Goals of these labs:

¢ Help you get started with this modern technology
* Explain the basic concepts to you
e Show you how to deploy your first applications on Kubernetes

Additional Docs
« OpenShift Docs

Additional Tutorials

8/91

https://docs.openshift.com/
https://learn.openshift.com/

- acend gmbh

1. Introduction

In this lab, we will introduce the core concepts of OpenShift.

All explanations and resources used in this lab give only a quick and not detailed overview. As OpenShift is
based on Kubernetes, its concepts also apply to OpenShift which you can find in the official Kubernetes
documentation .

Core concepts

With the open source software OpenShift, you get a platform to build and deploy your application in a
container as well as operate it at the same time. Therefore, OpenShift is also called a Container Platform, or
the term Container-as-a-Service (CaaS) is used.

Depending on the configuration the term Platform-as-a-Service (PaaS) works as well.

Container engine

OpenShift's underlying container engine is CRI-O . Earlier releases used Daocker .

Docker was originally created to help developers test their applications in their continuous integration
environments. Nowadays, system admins also use it. CRI-O doesn’t exist as long as Docker does. Itis a
“lightweight container runtime for Kubernetes” and is fully OCl-compliant .

Overview
OpenShift basically consists of control plane and worker nodes.

Worker node 1

Kubernetes Architectur

High Le‘lel- O\ler\liew Comainm ! ' Container 1

Container 2 Container 1

Container 3 Container 2

Kubernetes master
- Container Runtime
(ﬁl User interface kubelet kube-proxy

—_—
CLl, kubectl Scheduler Worker node 2

Controller-Manager

Container 1 Container 1

Container 2 Container 1
etcd

Container 3 Container 2

Container Runtime

kubelet kube-proxy

acend

9/91

https://kubernetes.io/docs/concepts/
https://cri-o.io/
https://www.docker.com/
https://github.com/opencontainers/runtime-spec

- acend gmbh

Control plane and worker nodes

The control plane components are the AP/ server, the scheduler and the controller manager. The APl server
itself represents the management interface. The scheduler and the controller manager decide how
applications should be deployed on the cluster. Additionally, the state and configuration of the cluster itself
are controlled in the control plane components.

Worker nodes are also known as compute nodes, application nodes or minions, and are responsible for
running the container workload (applications). The control plane for the worker nodes is implemented in the
control plane components. The hosts running these components were historically called masters.

Containers and images

The smallest entities in Kubernetes and OpenShift are Pods, which resemble your containerized application.

Using container virtualization, processes on a Linux system can be isolated up to a level where only the
predefined resources are available. Several containers can run on the same system without “seeing” each
other (files, process IDs, network). One container should contain one application (web server, database,
cache, etc.). It should be at least one part of the application, e.g. when running a multi-service middleware.
In a container itself any process can be started that runs natively on your operating system.

Containers are based on images. An image represents the file tree, which includes the binary, shared
libraries and other files which are needed to run your application.

A container image is typically built from a containerfile Or bpockerfile , which is a text file filled with
instructions. The end result is a hierarchically layered binary construct. Depending on the backend, the
implementation uses overlay or copy-on-write (COW) mechanisms to represent the image.

Layer example for a Tomcat application:

1. Base image (CentOS 7)
2. Install Java

3. Install Tomcat

4. Install App

The pre-built images under version control can be saved in an image registry and can then be used by the
container platform.

Namespaces and Projects

Namespaces in Kubernetes represent a logical segregation of unique names for entities (Pods, Services,
Deployments, ConfigMaps, etc.).

In OpenShift, users do not directly create Namespaces, they create Projects. A Project is a Namespace with
additional annotations.

Note

OpenShift's concept of a Project does not coincide with Rancher’s.

Permissions and roles can be bound on a per-project basis. This way, a user can control his own resources
inside a Project.

Note

Some resources are valid cluster-wise and cannot be set and controlled on a namespace basis.

10/91

- acend gmbh

Pods

A Pod is the smallest entity in Kubernetes and OpenShift.

It represents one instance of your running application process. The Pod consists of at least two containers,
one for your application itself and another one as part of the Kubernetes design, to keep the network
namespace. The so-called infrastructure container (or pause container) is therefore automatically added by
Kubernetes.

The application ports from inside the Pod are exposed via Services.

Services

A service represents a static endpoint for your application in the Pod. As a Pod and its IP address typically
are considered dynamic, the IP address of the Service does not change when changing the application
inside the Pod. If you scale up your Pods, you have an automatic internal load balancing towards all Pod IP
addresses.

There are different kinds of Services:

e clusterIP : Default virtual IP address range

® NodePort : Same as clusteriP plus open ports on the nodes

e loadBalancer : An external load balancer is created, only works in cloud environments, e.g. AWS ELB
e ExternalName : A DNS entry is created, also only works in cloud environments

A Service is unique inside a Namespace.

Deployment

Have a look at the official documentation .

Volume

Have a look at the official documentation .

Job

Have a look at the official documentation .

History

There is a official Kubernetes Documentary available on Youtube.

e Kubernetes: The Documentary [PART 1]
o K rnetes: The D mentary [PART 2

Inspired by the open source success of Docker in 2013 and seeing the need for innovation in the area of
large-scale cloud computing, a handful of forward-thinking Google engineers set to work on the container
orchestrator that would come to be known as Kubernetes- this new tool would forever change the way the
internet is built.

These engineers overcome technical challenges, resistance to open source from within, naysayers, and
intense competition from other big players in the industry.

Most engineers know about “The Container Orchestrator Wars’’' but most people would not be able to
11/91

https://docs.openshift.com/container-platform/latest/applications/deployments/what-deployments-are.html
https://docs.openshift.com/container-platform/latest/nodes/containers/nodes-containers-volumes.html
https://docs.openshift.com/container-platform/latest/nodes/jobs/nodes-nodes-jobs.html
https://www.youtube.com/watch?v=BE77h7dmoQU
https://www.youtube.com/watch?v=318elIq37PE

- acend gmbh
explain exactly what happened, and why it was Kubernetes that ultimately came out on top.

There is no topic more relevant to the current open source landscape. This film captures the story directly
from the people who lived it, featuring interviews with prominent engineers from Google, Red Hat, Twitter
and others.

1.1. YAML

YAML Ain’t Markup Language (YAML) is a human-readable data-serialization language. YAML is not a
programming language. It is mostly used for storing configuration information.

Note

Data serialization is the process of converting data objects, or object states present in complex data
structures, into a stream of bytes for storage, transfer, and distribution in a form that can allow recovery of
its original structure.

As you will see a lot of YAML in our Kubernetes basics course, we want to make sure you can read and write
YAML. If you are not yet familiar with YAML, this introduction is waiting for you. Otherwise, feel free to skip it
or come back later if you meet some less familiar YAML stuff.

This introduction is based on the YAML Tutorial from cloudbees.com .
For more information and the full spec have a look at https://yaml.org/

A simple file

Let’s look at a YAML file for an overview:

foo: "foo is not bar"
bar: "bar is not foo"
pi: 3.14159
awesome: true
kubernetes-birth-year: 2015
cloud-native:
- scalable
- dynamic
- cloud
- container
kubernetes:
version: "1.22.0"
deployed: true
applications:
- name: "My App"
location: "public cloud"

The file starts with three dashes. These dashes indicate the start of a new YAML document. YAML supports
multiple documents, and compliant parsers will recognize each set of dashes as the beginning of a new one.

Then we see the construct that makes up most of a typical YAML document: a key-value pair. foo is a key
that points to a string value: foo is not bar

YAML knows four different data types:

e foo & bar are strings.
e pi is a floating-point number

12 /91

https://www.cloudbees.com/blog/yaml-tutorial-everything-you-need-get-started
https://yaml.org/

- acend gmbh
¢ awesome iS a boolean

e kubernetes-birth-year iS an integer

You can enclose strings in single or double-quotes or no quotes at all. YAML recognizes unquoted numerals
as integers or floating point.

The cloud-native item is an array with four elements, each denoted by an opening dash. The elements in
cloud-native are indented with two spaces. Indentation is how YAML denotes nesting. The number of spaces
can vary from file to file, but tabs are not allowed.

Finally, kubernetes is a dictionary that contains a string version , a boolean deployed and an array applications
where the item of the array contains two strings .

YAML supports nesting of key-values, and mixing types.

Indentation and Whitespace

Whitespace is part of YAML’s formatting. Unless otherwise indicated, newlines indicate the end of a field.
You structure a YAML document with indentation. The indentation level can be one or more spaces. The
specification forbids tabs because tools treat them differently.

Comments

Comments begin with a pound sign. They can appear after a document value or take up an entire line.

This is a full 1ine comment
foo: bar # this is a comment, too

YAML data types

Values in YAML's key-value pairs are scalar. They act like the scalar types in languages like Perl, Javascript,
and Python. It's usually good enough to enclose strings in quotes, leave numbers unquoted, and let the
parser figure it out. But that’s only the tip of the iceberg. YAML is capable of a great deal more.

Key-Value Pairs and Dictionaries

The key-value is YAML's basic building block. Every item in a YAML document is a member of at least one
dictionary. The key is always a string. The value is a scalar so that it can be any datatype. So, as we’ve
already seen, the value can be a string, a number, or another dictionary.

Numeric types

YAML recognizes numeric types. We saw floating point and integers above. YAML supports several other
numeric types. An integer can be decimal, hexadecimal, or octal.

foo: 12345
bar: 0x12d4
plop: 023332

YAML supports both fixed and exponential floating point numbers.

13/91

- acend gmbh

foo: 1230.15
bar: 12.3015e+05

Finally, we can represent not-a-number (NAN) or infinity.

foo: .inf
bar: -.Inf
plop: .NAN

Foo is infinity. Bar is negative infinity, and plop is NAN.

Strings

YAML strings are Unicode. In most situations, you don’t have to specify them in quotes.

foo: this is a normal string

But if we want escape sequences handled, we need to use double quotes.

foo: "this is not a normal string\n"
bar: this is not a normal string\n

YAML processes the first value as ending with a carriage return and linefeed. Since the second value is not
quoted, YAML treats the \n as two characters.

foo: this is not a normal string
bar: this is not a normal string\n

YAML will not escape strings with single quotes, but the single quotes do avoid having string contents
interpreted as document formatting. String values can span more than one line. With the fold (greater than)
character, you can specify a string in a block.

bar: >
this is not a normal string it
spans more than
one line
see?

But it's interpreted without the newlines: bar : this is not a normal string it spans more than one line see?

The block (pipe) character has a similar function, but YAML interprets the field exactly as is.

14 /91

- acend gmbh

bar: |
this is not a normal string it
spans more than
one line
see?

So, we see the newlines where they are in the document.

bar : this is not a normal string it
spans more than

one line

see?

Nulls

You enter nulls with a tilde or the unquoted null string literal.

foo: ~
bar: null
Booleans

YAML indicates boolean values with the keywords True, On and Yes for true. False is indicated with False,
Off, or No.

foo: True
bar: False
light: On
TV: Off

Arrays

You can specify arrays or lists on a single line.

items: [1, 2, 3, 4, 5]
names: ["one", "two", "three", "four"]

Or, you can put them on multiple lines.

15/91

- acend gmbh

items:
=

[
HwWN

= 5
names:

- "one"

- "o

- "three"

- "four"

The multiple line format is useful for lists that contain complex objects instead of scalars.

items:
- things:
thingl: huey
things2: dewey
thing3: louie
- other things:
key: value

An array can contain any valid YAML value. The values in a list do not have to be the same type.

Dictionaries

We covered dictionaries above, but there’'s more to them. Like arrays, you can put dictionaries inline. We
saw this format above.

foo: { thingl: huey, thing2: louie, thing3: dewey }

We’ve seen them span lines before.

foo: bar
bar: foo

And, of course, they can be nested and hold any value.

foo:
bar:
- bar
- rab
- plop

16 /91

- acend gmbh

2. First steps

In this lab, we will interact with the OpenShift cluster for the first time.

Please make sure you completed Setup before you continue with this lab.

Projects

A Project is a logical design used in OpenShift to organize and separate your applications, Deployments,
Pods, Ingresses, Services, etc. on a top-level basis. Authorized users inside a Project are able to manage
those resources. Project names have to be unique in your cluster.

Task 2.2: Create a Project

You would usually create your first Project here using oc new-project . This is, however, not possible on the
provided cluster. Instead, a Project named <username>-training-test has been pre-created for you. Use this
Project for all labs in this training except for 9.5. ResourceQuotas and LimitRanges.

Note

[Please inform your trainer if you don’t see such a Project.

Note

lIn order to declare what Project to use, you have several possibilities:

¢ Some prefer to explicitly select the Project for each oc command by adding --namespace <namespace> OF -n
<namespace>

e By using the following command, you can switch into another Project instead of specifying it for each
oc command

oc project <namespace>

Task 2.3: Discover the OpenShift web console

Discover the different menu entries in the two views, the Developer and the Administrator view.

Display all existing Pods in the previously created Project with oc (there shouldn’t yet be any):

oc get pod --namespace <namespace>

Note

With the command oc get you can display all kinds of resources.

17 /91

- acend gmbh
3. Deploying a container image

In this lab, we are going to deploy our first container image and look at the concepts of Pods, Services, and
Deployments.

Task 3.1: Start and stop a single Pod

After we’'ve familiarized ourselves with the platform, we are going to have a look at deploying a pre-built
container image from Quay.io or any other public container registry.

In OpenShift we have used the <project> identifier to select the correct project. Please use the same
identifier in the context <namespace> to do the same for all upcoming labs. Ask your trainer if you want more
information on that.

First, we are going to directly start a new Pod. For this we have to define our Kubernetes Pod resource
definition. Create a new file pod_awesome-app.yaml with the content below.

Note

Alternatively, you can create the Pod definition on the web console. Simply click on the plus sign button
on the upper right (1), make sure you’ve selected the correct Project (2) and paste the content.

Red Hat

OpenShift

‘ Project: All Projects = | 2

Import YAML

Drag and drop YAML or JSON files into the editor, or manually enter files and use | - - - | to separate each definition.

apiVersion: vi
kind: Pod
metadata:

name: awesome-app

spec:

containers:

- image: REGISTRY-URL/acend/example-web-go:latest
imagePullPolicy: Always
name: awesome-app
resources:

limits:
cpu: 20m
memory: 32Mi
requests:
cpu: 10m
memory: 16Mi

Note

If you used the web console to import the Pod’s YAML definition, don’t execute the following command.

Now we can apply this with:

18/91

- acend gmbh
oc apply -f pod_awesome-app.yaml --namespace <namespace>
The output should be:
pod/awesome-app created

Use oc get pods --namespace <namespace> in order to show the running Pod:
oc get pods --namespace <namespace>

Which gives you an output similar to this:

NAME READY STATUS RESTARTS AGE
awesome-app 1/1 Running @ Tm24s

Have a look at your awesome-app Pod inside the OpenShift web console.

Now delete the newly created Pod:

oc delete pod awesome-app --namespace <namespace>

Task 3.2: Create a Deployment

In some use cases it can make sense to start a single Pod. But this has its downsides and is not really a
common practice. Let’s look at another concept which is tightly coupled with the Pod: the so-called
Deployment. A Deployment ensures that a Pod is monitored and checks that the number of running Pods
corresponds to the number of requested Pods.

To create a new Deployment we first define our Deployment in a new file deployment_example-web-go.yaml with
the content below.

Note

ou could, of course, again import the YAML on the web console as described above.

19/91

- acend gmbh

apiVersion: apps/vi
kind: Deployment
metadata:
labels:
app: example-web-go
name: example-web-go
spec:
replicas: 1
selector:
matchLabels:
app: example-web-go
template:
metadata:
labels:
app: example-web-go
spec:
containers:

- image: REGISTRY-URL/acend/example-web-go:latest
name: example-web-go
resources:

requests:
cpu: 10m
memory: 16Mi
limits:
cpu: 20m
memory: 32Mi

And with this we create our Deployment inside our already created namespace:

Note

If you used the web console to import the Deployment’s YAML definition, don’t execute the following
command.

oc apply -f deployment_example-web-go.yaml --namespace <namespace>

The output should be:
deployment . apps/example-web-go created

We’'re using a simple sample application written in Go, which you can find built as an image on Quay.io or as
source code on GitHub .

OpenShift creates the defined and necessary resources, pulls the container image (in this case from
Quay.io) and deploys the Pod.

Use the command oc get with the -w parameter in order to get the requested resources and afterward
watch for changes.

Note

he oc get -w command will never end unless you terminate it with cTrRL-c.

oc get pods -w --namespace <namespace>

20/91

https://quay.io/repository/acend/example-web-go
https://github.com/acend/awesome-apps

- acend gmbh
Note

Instead of using the -w parameter you can also use the watch command which should be available on most
Linux distributions:

watch oc get pods --namespace <namespace>

This process can last for some time depending on your internet connection and if the image is already
available locally.

Note

If you want to create your own container images and use them with OpenShift, you definitely should have a
look at these best practices and apply them. This image creation guide may be for OpenShift, however it
also applies to Kubernetes and other container platforms.

Creating Kubernetes resources

There are two fundamentally different ways to create Kubernetes resources. You've already seen one way:
Writing the resource’s definition in YAML (or JSON) and then applying it on the cluster using oc apply .

The other variant is to use helper commands. These are more straightforward: You don’t have to copy a
YAML definition from somewhere else and then adapt it. However, the result is the same. The helper
commands just simplify the process of creating the YAML definitions.

As an example, let’s look at creating above deployment, this time using a helper command instead. If you
already created the Deployment using above YAML definition, you don’t have to execute this command:

oc create deployment example-web-go --image=REGISTRY-URL/acend/example-web-go:latest --namespace <namespace>

It's important to know that these helper commands exist. However, in a world where GitOps concepts have
an ever-increasing presence, the idea is not to constantly create these resources with helper commands.
Instead, we save the resources’ YAML definitions in a Git repository and leave the creation and management
of those resources to a tool.

Task 3.3: Viewing the created resources

Display the created Deployment using the following command:

oc get deployments --namespace <namespace>

A Deployment defines the following facts:

« Update strategy: How application updates should be executed and how the Pods are exchanged

e Containers
o Which image should be deployed

o Environment configuration for Pods
o ImagePullPolicy

21/91

https://docs.openshift.com/container-platform/latest/openshift_images/create-images.html
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

- acend gmbh
¢ The number of Pods/Replicas that should be deployed

By using the -o (or --output) parameter we get a lot more information about the deployment itself. You can
choose between YAML and JSON formatting by indicating -o yam1 or -o json . In this training we are going to
use YAML, but please feel free to replace yami with json if you prefer.

oc get deployment example-web-go -o yaml --namespace <namespace>
After the image has been pulled, OpenShift deploys a Pod according to the Deployment:
oc get pods --namespace <namespace>

which gives you an output similar to this:

NAME READY STATUS RESTARTS AGE
example-web-go-69b658f647-xnm94 1/1 Running @ 39s

The Deployment defines that one replica should be deployed — which is running as we can see in the
output. This Pod is not yet reachable from outside the cluster.

Task 3.4: Verify the Deployment in the OpenShift web
console

Try to display the logs from the example application in the OpenShift web console.

22 /91

- acend gmbh

4. Exposing a service

In this lab, we are going to make the freshly deployed application from the last lab available online.

Task 4.1: Create a ClusterlIP Service

The command oc apply -f deployment_example-web-go.yaml from the last lab creates a Deployment but no Service.
A OpenShift Service is an abstract way to expose an application running on a set of Pods as a network
service. For some parts of your application (for example, frontends) you may want to expose a Service to an
external IP address which is outside your cluster.

OpenShift serviceTypes allow you to specify what kind of Service you want. The default is clusterIp .
Type Values and their behaviors are:

e ClusterIP : EXposes the Service on a cluster-internal IP. Choosing this value only makes the Service
reachable from within the cluster. This is the default ServiceType.

* NodePort : EXposes the Service on each Node’s IP at a static port (the NodePort). A ClusterlP Service, to
which the NodePort Service routes, is automatically created. You’ll be able to contact the NodePort
Service from outside the cluster, by requesting <NodelP>:<NodePort>.

¢ loadBalancer : Exposes the Service externally using a cloud provider’s load balancer. NodePort and
ClusterlP Services, to which the external load balancer routes, are automatically created.

e ExternalName : Maps the Service to the contents of the externalName field (e.g. foo.bar.example.com), by
returning a CNAME record with its value. No proxying of any kind is set up.

You can also use Ingress to expose your Service. Ingress is not a Service type, but it acts as the entry point
for your cluster. Ingress exposes HTTP and HTTPS routes from outside the cluster to services within the
cluster. Traffic routing is controlled by rules defined on the Route resource. A Route may be configured to
give Services externally reachable URLs, load balance traffic, terminate SSL / TLS, and offer name-based
virtual hosting. An Ingress controller is responsible for fulfilling the route, usually with a load balancer,
though it may also configure your edge router or additional frontends to help handle the traffic.

In order to create a Route, we first need to create a Service of type ClusterlP .

To create the Service add a new file svc-web-go.yaml with the following content:

apiVersion: vi
kind: Service
metadata:

labels:
app: example-web-go

name: example-web-go

spec:

ports:

- port: 5000
protocol: TCP
targetPort: 5000

selector:
app: example-web-go

type: ClusterIP

And then apply the file with:

23 /91

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types

- acend gmbh

oc apply -f svc-web-go.yaml --namespace <namespace>

There is also am imperative command to create a service and expose your application which can be used
instead of the yaml file with the oc apply ... command

oc expose deployment example-web-go --type=ClusterIP --name=example-web-go --port=5000 --target-port=5000 --namespace <
namespace>
Let's have a more detailed look at our Service:

oc get services --namespace <namespace>

Which gives you an output similar to this:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
example-web-go ClusterIP 10.43.91.62 <none> 5000/TCP
Note

Service IP (CLUSTER-IP) addresses stay the same for the duration of the Service’s lifespan.

By executing the following command:

oc get service example-web-go -o yaml --namespace <namespace>

You get additional information:

apiVersion: vi
kind: Service
metadata:
labels:
app: example-web-go
managedFields:

name: example-web-go
namespace: <namespace>
spec:
clusterIP: 10.43.91.62
externalTrafficPolicy: Cluster
ports:
- port: 5000
protocol: TCP
targetPort: 5000
selector:
app: example-web-go
sessionAffinity: None
type: ClusterIP
status:
loadBalancer: {3}

24 /91

- acend gmbh

The Service's selector defines which Pods are being used as Endpoints. This happens based on labels. Look

at the configuration of Service and Pod in order to find out what maps to what:

oc get service example-web-go -o yaml --namespace <namespace>

selector:
app: example-web-go

With the following command you get details from the Pod:

Note

First, get all Pod names from your namespace with (oc get pods --namespace <namespace>) and then replace

<pod> in the following command. If you have installed and configured the bash completion, you can also
press the TAB key for autocompletion of the Pod’s name.

oc get pod <pod> -0 yaml --namespace <namespace>

Let’s have a look at the label section of the Pod and verify that the Service selector matches the Pod’s

labels:

labels:
app: example-web-go

This link between Service and Pod can also be displayed in an easier fashion with the oc describe command:

oc describe service example-web-go --namespace <namespace>

Name:
Namespace:
Labels:
Annotations:
Selector:
Type:
IP:
Port:
TargetPort:
Endpoints:
Session Affinity:
External Traffic Policy:
Events:

Type Reason

The Endpoints show the IP addresses of all currently matched Pods.

example-web-go
example-ns
app=example-web-go
<none>
app=example-web-go
ClusterIP
10.39.240.212
<unset> 5000/TCP

5000/TCP
10.36.0.8:5000
None
Cluster
Age From Message

25/91

- acend gmbh

Task 4.2: Expose the Service

With the ClusterlP Service ready, we can now create the Route resource.
oc create route edge example-web-go --service example-web-go --namespace <namespace>

The output should be:
route.route.openshift.io/example-web-go created

We are now able to access our app via the freshly created route at nttps://example-web-go-<namespace>.<appdomain>

Find your actual app URL by looking at your route (HOST/PORT):
ocC get route - -hamespace <namespace>

Browse to the URL and check the output of your app.

Note

If the site doesn’t load, check if you are using the http://, not the https:// protocol, which might be the
default in your browser.

Note

he <appdomain> is the default domain under which your applications will be accessible and is provided by
your trainer. You can also use oc get route example-web-go to see the exact value of the exposed route.

Task 4.4: For fast learners

Have a closer look at the resources created in your namespace <namespace> Wwith the following commands and
try to understand them:

oc describe namespace <namespace>
oc get all --namespace <namespace>
oc describe <resource> <name> --namespace <namespace>

oc get <resource> <name> -0 yaml --namespace <namespace>

26 /91

- acend gmbh
5. Scaling

In this lab, we are going to show you how to scale applications on OpenShift. Furthermore, we show you how
OpenShift makes sure that the number of requested Pods is up and running and how an application can tell
the platform that it is ready to receive requests.

Note

his lab does not depend on previous labs. You can start with an empty Namespace.

Task 5.1: Scale the example application

Create a new Deployment in your Namespace. So again, lets define the Deployment using YAML in a file
deployment_example-web-app.yaml With the following content:

apiVersion: apps/vi
kind: Deployment
metadata:
labels:
app: example-web-app
name: example-web-app
spec:
replicas: 1
selector:
matchLabels:
app: example-web-app
strategy:
rollingUpdate:
maxSurge: 25%
maxUnavailable: @
type: RollingUpdate
template:
metadata:
labels:
app: example-web-app
spec:
containers:

- image: REGISTRY-URL/acend/example-web-python:latest
name: example-web-app
resources:

limits:
cpu: 100m
memory: 128Mi
requests:
cpu: 50m
memory: 128Mi

and then apply with:
oc apply -f deployment_example-web-app.yaml --namespace <namespace>

If we want to scale our example application, we have to tell the Deployment that we want to have three
running replicas instead of one. Let’'s have a closer look at the existing ReplicaSet:

oc get replicasets --namespace <namespace>

27 /91

- acend gmbh

Which will give you an output similar to this:

NAME
example-web-app-86d9d584f8

Or for even more details:

DESIRED

1

1

CURRENT

1

READY AGE

110s

oc get replicaset <replicaset> -o yaml --namespace <namespace>

The ReplicaSet shows how many instances of a Pod are desired, current and ready.

Now we scale our application to three replicas:

oc scale deployment example-web-app --replicas=3 --namespace <namespace>

Check the number of desired, current and ready replicas:

oc get replicasets --namespace <namespace>

NAME
example-web-app-86d9d584f8

Look at how many Pods there are:

oc get pods --namespace <namespace>

Which gives you an output similar to this:

NAME

example-web-app-86d9d584f8-7vjcj
example-web-app-86d9d584f8-hbvlv
example-web-app-86d9d584f8-qg499

Note

DESIRED CURRENT READY AGE

3 3 3 4m33s
READY STATUS RESTARTS
1/1 Running 0
1/1 Running @
1/1 Running @

OpenShift supports horizontal and vertical autoscaling .

AGE
5m2s
31s
31s

As we changed the number of replicas with the oc scale deployment command, the example-web-app Deployment
now differs from your local deployment_example-web-app.yaml file. Change your local deployment_example-web-app.yaml

file to match the current number of replicas and update the value replicas to 3:

28 /91

https://docs.openshift.com/container-platform/latest/nodes/pods/nodes-pods-autoscaling.html
https://docs.openshift.com/container-platform/latest/nodes/pods/nodes-pods-vertical-autoscaler.html

[...]
metadata:
labels:

app: example-web-app
name: example-web-app

spec:
replicas: 3
selector:
matchLabels:

app: example-web-app

[...]

- acend gmbh

Check for uninterruptible Deployments

Now we expose our application to the internet by creating a service and a route.

First the service:

oc expose deployment example-web-app --name="example-web-app" --port=5000 --namespace <namespace>

Then the route:

oc create route edge example-web-app --port 5000 --service example-web-app --namespace <namespace>

Let's look at our Service. We should see all three corresponding Endpoints:

oc describe service example-web-app --namespace <namespace>

Name :
Namespace:
Labels:
Annotations:
Selector:
Type:

IP Family Policy:

IP Families:
IP:

IPs:

Port:
TargetPort:
Endpoints:

Session Affinity:

Events:

example-web-app
acend-test
app=example-web-app
<none>
app=example-web-app
ClusterIP
SingleStack

IPv4

172.30.89.44
172.30.89.44
<unset> 5000/TCP
5000/TCP

10.125.4.70:5000,10.126.4.137:5000,10.126.4.138:5000

None
<none>

Scaling of Pods is fast as OpenShift simply creates new containers.

You can check the availability of your Service while you scale the number of replicas up and down in your

browser: https://<route hostname> .

Note

ou can find out the route’s hostname by looking at the output of oc get route .

- acend gmbh
Now, execute the corresponding loop command for your operating system in another console.

Linux:

URL=$(oc get routes example-web-app -o go-template="{{ .spec.host }}" --namespace <namespace>)
while true; do sleep 1; curl -s https://${URL}/pod/; date "+ TIME: %H:%M:%S,%3N"; done

Windows PowerShell:

while(1) {
Start-Sleep -s 1
Invoke-RestMethod https://<URL>/pod/
Get-Date -Uformat "+ TIME: %H:%M:%S,%3N"
3

Scale from 3 replicas to 1. The output shows which Pod is still alive and is responding to requests:

example-web-app-86d9d584f8-7vjcj TIME: 17:33:07,289
example-web-app-86d9d584f8-7vjcj TIME: 17:33:08,357
example-web-app-86d9d584f8-hbvlvy TIME: 17:33:09,423
example-web-app-86d9d584f8-7vjcj TIME: 17:33:10,494
example-web-app-86d9d584f8-qg499 TIME: 17:33:11,559
example-web-app-86d9d584f8-hbvlv TIME: 17:33:12,629
example-web-app-86d9d584f8-qg499 TIME: 17:33:13,695
example-web-app-86d9d584f8-hbvlv TIME: 17:33:14,771
example-web-app-86d9d584f8-hbvly TIME: 17:33:15,840
example-web-app-86d9d584f8-7vjcj TIME: 17:33:16,912
example-web-app-86d9d584f8-7vjcj TIME: 17:33:17,980
example-web-app-86d9d584f8-7vjcj TIME: 17:33:19,051
example-web-app-86d9d584f8-7vjcj TIME: 17:33:20,119
example-web-app-86d9d584f8-7vjcj TIME: 17:33:21,182
example-web-app-86d9d584f8-7vjcj TIME: 17:33:22,248
example-web-app-86d9d584f8-7vjcj TIME: 17:33:23,313
example-web-app-86d9d584f8-7vjcj TIME: 17:33:24,377
example-web-app-86d9d584f8-7vjcj TIME: 17:33:25,445
example-web-app-86d9d584f8-7vjcj TIME: 17:33:26,513

The requests get distributed amongst the three Pods. As soon as you scale down to one Pod, there should
be only one remaining Pod that responds.

Let’'s make another test: What happens if you start a new Deployment while our request generator is still
running?

oc rollout restart deployment example-web-app --namespace <namespace>

During a short period we won't get a response:

30/91

- acend gmbh

example-web-app-86d9d584f8-7vjcj TIME: 17:37:24,121
example-web-app-86d9d584f8-7vjcj TIME: 17:37:25,189
example-web-app-86d9d584f8-7vjcj TIME: 17:37:26,262
example-web-app-86d9d584f8-7vjcj TIME: 17:37:27,328
example-web-app-86d9d584f8-7vjcj TIME: 17:37:28,395
example-web-app-86d9d584f8-7vjcj TIME: 17:37:29,459
example-web-app-86d9d584f8-7vjcj TIME: 17:37:30,531
example-web-app-86d9d584f8-7vjcj TIME: 17:37:31,596
example-web-app-86d9d584f8-7vjcj TIME: 17:37:32,662
no answer

example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:33,729
example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:34,794
example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:35,862
example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:36,929
example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:37,995
example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:39,060
example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:40,118
example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:41,187

In our example, we use a very lightweight Pod. If we had used a more heavyweight Pod that needed a
longer time to respond to requests, we would of course see a larger gap. An example for this would be a
Java application with a startup time of 30 seconds:

example-spring-boot-2-73aln TIME: 16:48:25,251
example-spring-boot-2-73aln TIME: 16:48:26,305
example-spring-boot-2-73aln TIME: 16:48:27,400
example-spring-boot-2-73aln TIME: 16:48:28,463
example-spring-boot-2-73aln TIME: 16:48:29,507
<html><body><h1>503 Service Unavailable</h1>
No server is available to handle this request.
</body></html>

TIME: 16:48:33,562

<html><body><h1>503 Service Unavailable</h1>
No server is available to handle this request.
</body></html>

TIME: 16:48:34,601

example-spring-boot-3-tjdkj TIME: 16:49:20,114

example-spring-boot-3-tjdkj TIME: 16:49:21,181
example-spring-boot-3-tjdkj TIME: 16:49:22,231

It is even possible that the Service gets down, and the routing layer responds with the status code 503 as
can be seen in the example output above.

In the following chapter we are going to look at how a Service can be configured to be highly available.

Uninterruptible Deployments

The rolling update strategy makes it possible to deploy Pods without interruption. The rolling update
strategy means that the new version of an application gets deployed and started. As soon as the application
says it is ready, OpenShift forwards requests to the new instead of the old version of the Pod, and the old
Pod gets terminated.

Additionally, container health checks help OpenShift to precisely determine what state the application is in.
Basically, there are two different kinds of checks that can be implemented:

e Liveness probes are used to find out if an application is still running

* Readiness probes tell us if the application is ready to receive requests (which is especially relevant for
the above-mentioned rolling updates)

These probes can be implemented as HTTP checks, container execution checks (the execution of a
command or script inside a container) or TCP socket checks.

31/91

https://kubernetes.io/docs/tutorials/kubernetes-basics/update/update-intro/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/

- acend gmbh
In our example, we want the application to tell OpenShift that it is ready for requests with an appropriate
readiness probe.

Our example application has a health check context named health: http://${URL}/health

Task 5.2: Availability during deployment

Define the readiness probe on the Deployment using the following command:

oc set probe deploy/example-web-app --readiness --get-url=http://:5000/health --initial-delay-seconds=10 --timeout-seco
nds=1 --namespace <namespace>

The command above results in the following readinessProbe snippet being inserted into the Deployment:

containers:

- image: REGISTRY-URL/acend/example-web-python:latest
imagePullPolicy: Always
name: example-web-app
readinessProbe:

httpGet:

path: /health

port: 5000

scheme: HTTP
initialDelaySeconds: 10
timeoutSeconds: 1

We are now going to verify that a redeployment of the application does not lead to an interruption.

Set up the loop again to periodically check the application’s response (you don’t have to set the surL
variable again if it is still defined):

URL=$(oc get routes example-web-app -o go-template="{{ .spec.host }}" --namespace <namespace>)
while true; do sleep 1; curl -s https://${URL}/pod/; date "+ TIME: %H:%M:%S,%3N"; done

Windows PowerShell:

while(1) {
Start-Sleep -s 1
Invoke-RestMethod https://<URL>/pod/
Get-Date -Uformat "+ TIME: %H:%M:%S,%3N"

}
Restart your Deployment with:

oc rollout restart deployment example-web-app --namespace <namespace>

32/91

- acend gmbh

Self-healing

Via the Deployment definition we told OpenShift how many replicas we want. So what happens if we simply
delete a Pod?

Look for a running Pod (status running) that you can bear to kill via oc get pods .

Show all Pods and watch for changes:
oc get pods -w --namespace <namespace>

Now delete a Pod (in another terminal) with the following command:
oc delete pod <pod> --namespace <namespace>

Observe how OpenShift instantly creates a new Pod in order to fulfill the desired number of running
instances.

33/91

- acend gmbh

6. Troubleshooting

This lab helps you troubleshoot your application and shows you some tools to make troubleshooting easier.

Logging into a container

Running containers should be treated as immutable infrastructure and should therefore not be modified.
However, there are some use cases in which you have to log into your running container. Debugging and
analyzing is one example for this.

Task 6.1: Shell into Pod

With OpenShift you can open a remote shell into a Pod without installing SSH by using the command oc rsh .
The command can also be used to execute any command in a Pod.

Note

If you're using Git Bash on Windows, you need to append the command with winpty.

Choose a Pod with oc get pods --namespace <namespace> and execute the following command:
oc rsh --namespace <namespace> <pod>

You now have a running shell session inside the container in which you can execute every binary available,
e.g.:

1s -1

total 12

“rw-r--r-- 1 10020700 root 8192 Nov 27 15:12 hellos.db
-rWXrwsr-x 1 web root 2454 Oct 5 08:55 run.py
drwxrwsr-x 1 web root 17 Oct 5 08:55 static
drwxrwsr-x 1 web root 63 Oct 5 08:55 templates

With exit or cTrRL+d you can leave the container and close the connection:

exit

Task 6.2: Single commands

Single commands inside a container can also be executed with oc rsh :

34 /91

- acend gmbh

oc rsh --namespace <namespace> <pod> <command>

Example:

oc rsh --namespace acend-test example-web-app-8b465c687-t9g7b env
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
TERM=xterm

HOSTNAME=example-web-app-8b465c687-t9g7b

NSS_SDB_USE_CACHE=no
KUBERNETES_PORT_443_TCP=tcp://172.30.0.1:443
KUBERNETES_PORT_443_TCP_PORT=443
EXAMPLE_WEB_APP_PORT_5000_TCP_PORT=5000

The debug command

One of the disadvantages of using the oc rsh command is that it depends on the container to actually run. If
the Pod can’t even start, this is a problem but also where the oc debug command comes in. The oc debug
command starts an interactive shell using the definition of a Deployment, Pod, DaemonSet, Job or even an
ImageStreamTag. In OpenShift 4 it can also be used to open a shell on a Node to analyze it.

The quick way of using it is oc debug RESOURCE/NAME but have a good look at its help page. There are some very
interesting parameters like --as-root that give you (depending on your permissions on the cluster) a very
powerful means of debugging a Pod.

Watching log files

Log files of a Pod can be shown with the following command:
oc logs <pod> --namespace <namespace>

The parameter - allows you to follow the log file (same as tail -f). With this, log files are streamed and
new entries are shown immediately.

When a Pod is in state crashLoopBackoff it means that although multiple attempts have been made, no
container inside the Pod could be started successfully. Now even though no container might be running at
the moment the oc logs command is executed, there is a way to view the logs the application might have
generated. This is achieved using the -p or --previous parameter.

Note

his command will only work on pods that had container restarts. You can check the rRestArRTs column in the
oc get pods output if this is the case.

oc logs -p <pod> --namespace <namespace>

Note

Baloise uses Splunk to aggregate and visualize all logs, including those of Pods.

35/91

https://www.splunk.com/

- acend gmbh

Task 6.3: Port forwarding

OpenShift allows you to forward arbitrary ports to your development workstation. This allows you to access
admin consoles, databases, etc., even when they are not exposed externally. Port forwarding is handled by
the OpenShift control plane nodes and therefore tunneled from the client via HTTPS. This allows you to
access the OpenShift platform even when there are restrictive firewalls or proxies between your workstation
and OpenShift.

Get the name of the Pod:

oc get pod --namespace <namespace>

Then execute the port forwarding command using the Pod’s name:

Note

Best run this command in a separate shell, or in the background by adding a “&” at the end of the
command.

oc port-forward <pod> 5000:5000 --namespace <namespace>
Don’t forget to change the Pod name to your own installation. If configured, you can use auto-completion.

The output of the command should look like this:

Forwarding from 127.0.0.1:5000 -> 5000
Forwarding from [::1]:5000 -> 5000

Note

Use the additional parameter --address <IP address> (Where <IP address> refers to a NIC’s IP address from your
local workstation) if you want to access the forwarded port from outside your own local workstation.

The application is now available with the following link: http://localhost:5000/ . Or try a curl command:
curl localhost:5000

With the same concept you can access databases from your local workstation or connect your local
development environment via remote debugging to your application in the Pod.

This documentation page offers some more details about port forwarding.

Note
he oc port-forward process runs as long as it is not terminated by the user. So when done, stop it with cTRL-c.

36/91

http://localhost:5000/
https://docs.openshift.com/container-platform/latest/nodes/containers/nodes-containers-port-forwarding.html

- acend gmbh

Events

OpenShift maintains an event log with high-level information on what’s going on in the cluster. It’s possible
that everything looks okay at first but somehow something seems stuck. Make sure to have a look at the
events because they can give you more information if something is not working as expected.

Use the following command to list the events in chronological order:

oc get events --sort-by=.metadata.creationTimestamp --namespace <namespace>

Dry-run

To help verify changes, you can use the optional oc flag --dry-run=client -0 yaml to see the rendered YAML
definition of your Kubernetes objects, without sending it to the API.

The following oc subcommands support this flag (non-final list):

apply
create
expose
patch
replace
run

set

For example, we can use the --dry-run=client flag to create a template for our Deployment:

oc create deployment example-web-app --image=REGISTRY-URL/acend/example-web-python:latest --namespace acend-test --dry-
run=client -o yaml

The result is the following YAML output:

37 /91

- acend gmbh

apiVersion: apps/vi
kind: Deployment
metadata:
creationTimestamp: null
labels:
app: example-web-app
name: example-web-app
namespace: acend-test
spec:
replicas: 1
selector:
matchLabels:
app: example-web-app
strategy: {3}
template:
metadata:
creationTimestamp: null
labels:
app: example-web-app
spec:
containers:

- image: REGISTRY-URL/acend/example-web-python:latest
name: example-web
resources: {}

status: {}

oc APl requests

If you want to see the HTTP requests oc sends to the Kubernetes API in detail, you can use the optional flag
--v=10 .

For example, to see the API request for creating a deployment:

oc create deployment test-deployment --image=REGISTRY-URL/acend/example-web-python:latest --namespace <namespace> --rep
licas=0 --v=10

The resulting output looks like this:

38/91

- acend gmbh

11114 15:31:13.605759 85289 request.go:1073] Request Body: {"kind":"Deployment","apiVersion":"apps/v1","metadata":{"n
ame":"test-deployment", "namespace": "acend-test","creationTimestamp":null, "labels":{"app":"test-deployment"}}, "spec":{"r
eplicas":0,"selector":{"matchLabels":{"app":"test-deployment"}}, "template":{"metadata":{"creationTimestamp":null, "label
s":{"app":"test-deployment"}}, "spec":{"containers":[{"name": "example-web", "image": "REGISTRY-URL/acend/example-web-pytho
n:latest", "resources":{}}1}}, "strategy":{}}, "status":{}}

11114 15:31:13.605817 85289 round_trippers.go:466] curl -v -XPOST -H "Accept: application/json, */*" -H "Content-Typ
e: application/json" -H "User-Agent: oc/4.11.0 (linux/amd64) kubernetes/262ac9c" -H "Authorization: Bearer <masked>" 'h
ttps://api.ocp-staging.cloudscale.puzzle.ch:6443/apis/apps/v1/namespaces/acend-test/deployments?fieldManager=kubectl-cr
eate&fieldValidation=Ignore'

11114 15:31:13.607320 85289 round_trippers.go:495] HTTP Trace: DNS Lookup for api.ocp-staging.cloudscale.puzzle.ch re
solved to [{5.102.150.82 }]

I1114 15:31:13.611279 85289 round_trippers.go:510] HTTP Trace: Dial to tcp:5.102.150.82:6443 succeed

11114 15:31:13.675096 85289 round_trippers.go:553] POST https://api.ocp-staging.cloudscale.puzzle.ch:6443/apis/apps/v
1/namespaces/acend-test/deployments?fieldManager=kubectl-create&fieldValidation=Ignore 201 Created in 69 milliseconds
11114 15:31:13.675120 85289 round_trippers.go:570] HTTP Statistics: DNSLookup 1 ms Dial 3 ms TLSHandshake 35 ms Serve
rProcessing 27 ms Duration 69 ms

I1114 15:31:13.675137 85289 round_trippers.go:577] Response Headers:

11114 15:31:13.675151 85289 round_trippers.go:580] Audit-Id: 509255b1-ee23-479a-be56-dfc3ab073864

11114 15:31:13.675164 85289 round_trippers.go:580] Cache-Control: no-cache, private

I1114 15:31:13.675181 85289 round_trippers.go:580] Content-Type: application/json

11114 15:31:13.675200 85289 round_trippers.go:580] X-Kubernetes-Pf-Flowschema-Uid: e3e152ee-768c-43c5-b350-bb3cbf
806147

I1114 15:31:13.675215 85289 round_trippers.go:580] X-Kubernetes-Pf-Prioritylevel-Uid: 47f392da-68d1-4e43-9d77-ff5
f7b7ecd2e

11114 15:31:13.675230 85289 round_trippers.go:580] Content-Length: 1739

11114 15:31:13.675244 85289 round_trippers.go:580] Date: Mon, 14 Nov 2022 14:31:13 GMT

11114 15:31:13.676116 85289 request.go:1073] Response Body: {"kind":"Deployment","apiVersion":"apps/v1","metadata":{"
name":"test-deployment", "namespace":"acend-test","uid":"a6985d28-3caa-451f-a648-4c7cde3b51ac", "resourceVersion":"206938
5577","generation":1,"creationTimestamp":"2022-11-14T14:31:132","labels":{"app": "test-deployment"}, "managedFields":[{"m
anager":"kubectl-create", "operation":"Update", "apiVersion":"apps/v1","time":"2022-11-14T14:31:13Z2","fieldsType":"Fields
V1", "fieldsV1":{"f:metadata":{"f:1labels":{".":{},"f:app":{3}},"f:spec":{"f:progressDeadlineSeconds":{}, "f:replicas":{},
"f:revisionHistoryLimit":{},"f:selector":{},"f:strategy":{"f:rollingUpdate":{".":{3}, "f:maxSurge":{}, "f:maxUnavailable":
{3}, "f:type":{33},"f:template":{"f:metadata": {"f:1labels":{".":{3},"f:app": {33}, "f:spec":{"f:containers" :{"k:{\"name\":\"e
xample-web\"}":{".":{},"f:image":{}, "f:imagePullPolicy":{3}, "f:name":{},"f:resources":{}, "f:terminationMessagePath":{},"
f:terminationMessagePolicy":{}3}}, "f:dnsPolicy":{3},"f:restartPolicy":{}, "f:schedulerName":{},"f:securityContext":{},"f:t
erminationGracePeriodSeconds":{}}}3}}3} 1}, "spec":{"replicas":0,"selector":{"matchLabels":{"app":"test-deployment"}}, "temp
late":{"metadata":{"creationTimestamp":null, "labels":{"app":"test-deployment"}}, "spec":{"containers":[{"name":"example-
web", "image": "REGISTRY-URL/acend/example-web-python:latest", "resources":{}, "terminationMessagePath":"/dev/termination-1
og","terminationMessagePolicy":"File", "imagePullPolicy":"Always"}1, "restartPolicy":"Always","terminationGracePeriodSeco
nds":30, "dnsPolicy":"ClusterFirst", "securityContext":{},"schedulerName": "default-scheduler"}},"strategy":{"type":"Rolli
ngUpdate", "rollingUpdate":{"maxUnavailable":"25%", "maxSurge":"25%"}}, "revisionHistoryLimit":10, "progressDeadlineSeconds
":600},"status":{}}

deployment.apps/test-deployment created

As you can see, the output conveniently contains the corresponding curi commands which we could use in
our own code, tools, pipelines etc.

Note

If you created the deployment to see the output, you can delete it again as it's not used anywhere else
(which is also the reason why the replicas are set to o):

oc delete deploy/test-deployment --namespace <namespace>

Progress

At this point, you are able to visualize your progress on the labs by browsing through the following page

If you are not able to open your awesome-app with localhost, because you are using a webshell, you can
also use the ingress address: https://example-web-app-<namespace>.<appdomain>/progress t0 access the dashboard.

You may need to set some extra permissions to let the dashboard monitor your progress. Have fun!

39/91

http://localhost:5000/progress

- acend gmbh

oc create rolebinding progress --clusterrole=view --serviceaccount=<namespace>:default --namespace=<namespace>

40/91

- acend gmbh

7. Attaching a database

Numerous applications are stateful in some way and want to save data persistently, be it in a database, as
files on a filesystem or in an object store. In this lab, we are going to create a MariaDB database and
configure our application to store its data in it.

Please make sure you completed labs 2. First steps, 3. Deploying a container image and 4. Exposing a
service before you continue with this lab.

Task 7.1: Instantiate a MariaDB database

We are first going to create a so-called Secretin which we store sensitive data. The secret will be used to
access the database and also to create the initial database. The oc create secret command helps us create
the secret like so:

oc create secret generic mariadb \
--from-literal=database-name=acend_exampledb \
--from-literal=database-password=mysqglpassword \
--from-literal=database-root-password=mysglrootpassword \
--from-literal=database-user=acend_user \
--namespace <namespace> \
--dry-run=client -o yaml > secret_mariadb.yaml

Above command has not yet created any resources on our cluster as we used the --dry-run=client parameter
and redirected the output into the file secret_mariadb.yaml .

The reason we haven’t actually created the Secret yet but instead put the resource definition in a file has to
do with the way things work at Baloise. The file will help you later. But for now, create the Secret by
applying the file’s content:

oc apply -f secret_mariadb.yaml

The Secret contains the database name, user, password, and the root password. However, these values will
neither be shown with oc get nor with oc describe :

oc get secret mariadb --output yaml --namespace <namespace>

apiVersion: v1

data:
database-name: YWN1bmQtZXhhbXBszZS1kYg==
database-password: bXlzcWxwYXNzd29yZA==
database-root-password: bXlzcWxyb290cGFzc3dvcemQ=
database-user: YWNlbmRfdXNlcg==

kind: Secret

metadata:

type: Opaque

41/91

- acend gmbh
The reason is that all the values in the .data section are base64 encoded. Even though we cannot see the
true values, they can easily be decoded:

echo "YWN1lbmQtZXhhbXBsZS1kYg==" | base64 -d

Note

There's also the oc extract command which can be used to extract the content of Secrets and ConfigMaps
linto a local directory. Use oc extract --help to see how it works.

Note

By default, Secrets are not encrypted!

However, both OpenShift and Kubernetes (1.13 and later) offer the capability to encrypt data in etcd.

At Baloise, secrets are managed by HashiCorp Vault and integrated into OpenShift by use of the External
Secrets Operator .

We are now going to create a Deployment and a Service. As a first example, we use a database without
persistent storage. Only use an ephemeral database for testing purposes as a restart of the Pod leads to
data loss. We are going to look at how to persist this data in a persistent volume later on.

In our case we want to create a Deployment and Service for our MariaDB database. Save this snippet as

mariadb.yaml :

apiVersion: vi
kind: Service
metadata:

name: mariadb

labels:
template: mariadb-ephemeral-template

spec:

ports:

- name: mariadb
port: 3306
protocol: TCP
targetPort: 3306

selector:
app: mariadb

type: ClusterIP
apiVersion: apps/vi
kind: Deployment
metadata:

name: mariadb

labels:
app: mariadb

spec:

selector:
matchLabels:

app: mariadb
strategy:
type: Recreate
template:
metadata:
labels:
app: mariadb
spec:
containers:
- image: REGISTRY-URL/acend/mariadb-105:1
name: mariadb

env:
= nomo- MVQOI IICED

42 /91

https://docs.openshift.com/container-platform/latest/security/encrypting-etcd.html
https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/
https://external-secrets.io/

- acend gmbh

name. 1 oye_uonn
valueFrom:
secretKeyRef:
key: database-user
name: mariadb
- name: MYSQL_PASSWORD
valueFrom:
secretKeyRef':
key: database-password
name: mariadb
- name: MYSQL_ROOT_PASSWORD
valueFrom:
secretKeyRef':
key: database-root-password
name: mariadb
- name: MYSQL_DATABASE
valueFrom:
secretKeyRef:
key: database-name
name: mariadb
livenessProbe:
tcpSocket:
port: 3306
ports:
- containerPort: 3306
name: mariadb
resources:
limits:
cpu: 500m
memory: 512Mi
requests:
cpu: 50m
memory: 128Mi
volumeMounts:
- mountPath: /var/lib/mysql/data
name: mariadb-data
volumes:
- emptyDir: {3}
name: mariadb-data

Apply it with:

oc apply -f mariadb.yaml --namespace <namespace>

As soon as the container image has been pulled, you will see a new Pod using oc get pods .

The environment variables defined in the deployment configure the MariaDB Pod and how our frontend will
be able to access it.

The interesting thing about Secrets is that they can be reused, e.g., in different Deployments. We could
extract all the plaintext values from the Secret and put them as environment variables into the
Deployments, but it’s way easier to instead simply refer to its values inside the Deployment (as in this lab)
like this:

43/91

- acend gmbh

spec:
template:
spec:
containers:
- name: mariadb
env:
- name: MYSQL_USER
valueFrom:
secretKeyRef:
key: database-user
name: mariadb
- name: MYSQL_PASSWORD
valueFrom:
secretKeyRef':
key: database-password
name: mariadb
- name: MYSQL_ROOT_PASSWORD
valueFrom:
secretKeyRef':
key: database-root-password
name: mariadb
- name: MYSQL_DATABASE
valueFrom:
secretKeyRef':
key: database-name
name: mariadb

Above lines are an excerpt of the MariaDB Deployment. Most parts have been cut out to focus on the
relevant lines: The references to the mariado Secret. As you can see, instead of directly defining
environment variables you can refer to a specific key inside a Secret. We are going to make further use of
this concept for our Python application.

Task 7.3: Attach the database to the application

By default, our example-web-app application uses an SQLite memory database.

However, this can be changed by defining the following environment variable to use the newly created
MariaDB database:

#MYSQL_URI=mysql://<user>:<password>@<host>/<database>
MYSQL_URI=mysql://acend_user:mysqlpassword@mariadb/acend_exampledb

The connection string our example-web-app application uses to connect to our new MariaDB, is a concatenated
string from the values of the mariadb Secret.

For the actual MariaDB host, you can either use the MariaDB Service’s ClusterIP or DNS name as the
address. All Services and Pods can be resolved by DNS using their name.

The following commands set the environment variables for the deployment configuration of the example-web-
app application:

Depending on the shell you use, the following set env. command works but inserts too many apostrophes!
Check the deployment’s environment variable afterwards or directly edit it as described further down
below.

44 /91

- acend gmbh

oc set env --from=secret/mariadb --prefix=MYSQL_ deploy/example-web-app --namespace <namespace>

and

oc set env deploy/example-web-app MYSQL_URI="mysql://$(MYSQL_DATABASE_USER):$(MYSQL_DATABASE_PASSWORD)@mariadb/$(MYSQL_
DATABASE_NAME)' --namespace <namespace>

The first command inserts the values from the Secret, the second finally uses these values to put them in
the environment variable MvsqL_urR1 which the application considers.

You can also do the changes by directly editing your local deployment_example-web-app.yaml file. Find the section
which defines the containers. You should find it under:

spec:
template:
spec:
containers:
- image:

The dash before image: defines the beginning of a new container definition. The following specifications
should be inserted into this container definition:

env:
- name: MYSQL_DATABASE_NAME
valueFrom:
secretKeyRef':
key: database-name
name: mariadb
- name: MYSQL_DATABASE_PASSWORD
valueFrom:
secretKeyRef':
key: database-password
name: mariadb
- name: MYSQL_DATABASE_ROOT_PASSWORD
valueFrom:
secretKeyRef:
key: database-root-password
name: mariadb
- name: MYSQL_DATABASE_USER
valueFrom:
secretKeyRef:
key: database-user
name: mariadb
- name: MYSQL_URI
value: mysql://$(MYSQL_DATABASE_USER):$(MYSQL_DATABASE _PASSWORD)@mariadb/$(MYSQL_DATABASE_NAME)

Your file should now look like this:

45/91

- acend gmbh

containers:

- image: REGISTRY-URL/acend/example-web-python:latest
imagePullPolicy: Always
name: example-web-app

env:
- name: MYSQL_DATABASE_NAME

Then use:

oc apply -

valueFrom:
secretKeyRef':
key: database-name
name: mariadb
name: MYSQL_DATABASE_PASSWORD
valueFrom:
secretKeyRef':
key: database-password
name: mariadb
name: MYSQL_DATABASE_ROOT_PASSWORD
valueFrom:
secretKeyRef':
key: database-root-password
name: mariadb
name: MYSQL_DATABASE_USER
valueFrom:
secretKeyRef':
key: database-user
name: mariadb
name: MYSQL_URI

value: mysql://$(MYSQL_DATABASE_USER):$(MYSQL_DATABASE_PASSWORD)@mariadb/$(MYSQL_DATABASE_NAME)

f deployment_example-web-app.yaml --namespace <namespace>

to apply the changes.

The environment can also be checked with the set env command and the --1ist parameter:

oc set env deploy/example-web-app --list --namespace <namespace>

This will show the environment as follows:

deployments/example-web-app, container example-web-app

MYSQL_DATABASE_PASSWORD from secret mariadb, key database-password
MYSQL_DATABASE_ROOT_PASSWORD from secret mariadb, key database-root-password

MYSQL_DATABASE_USER from secret mariadb, key database-user
MYSQL_DATABASE_NAME from secret mariadb, key database-name

MYSQL_URI=mysql://$(MYSQL_DATABASE_USER):$(MYSQL_DATABASE_PASSWORD)@mariadb/$(MYSQL_DATABASE_NAME)

Do not proceed with the lab before all example-web-app pods are restarted successfully.

The change of the deployment definition (environment change) triggers a new rollout and all example-web-
app pods will be restarted. The application will not be connected to the database until all pods are restarted
successfully.

46 /91

- acend gmbh
In order to find out if the change worked we can either look at the container’s logs (oc logs <pod>) Or we
could register some “Hellos” in the application, delete the Pod, wait for the new Pod to be started and check
if they are still there.

Note

his does not work if we delete the database Pod as its data is not yet persisted.

Task 7.4: Manual database connection

As described in 6. Troubleshooting we can log into a Pod with oc rsh <pod> .

Show all Pods:

oc get pods --namespace <namespace>

Which gives you an output similar to this:

NAME READY STATUS RESTARTS AGE
example-web-app-574544fd68-qfkem 1/1 Running 0 2m20s
mariadb-f845ccdb7-hf2x5 1/1 Running 0 31m
mariadb-1-deploy 0/1 Completed @ 11m

Log into the MariaDB Pod:

Note

As mentioned in 6. Troubleshooting, remember to append the command with winpty if you're using Git Bash
on Windows.

oc rsh --namespace <namespace> <mariadb-pod-name>

You are now able to connect to the database and display the data. Login with:

mysqgl -u$MYSQL_USER -p$MYSQL_PASSWORD -h$MARIADB_SERVICE_HOST $MYSQL_DATABASE

Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MariaDB connection id is 52810

Server version: 10.2.22-MariaDB MariaDB Server

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [acend_exampledb]>

Show all tables with:

47 /91

- acend gmbh

show tables;
Show any entered “Hellos” with:

select * from hello;

Task 7.5: Import a database dump

Our task is now to import this dump.sqgl into the MariaDB database running as a Pod. Use the mysql
command line utility to do this. Make sure the database is empty beforehand. You could also delete and
recreate the database.

Note

ou can also copy local files into a Pod using oc cp. Be aware that the tar binary has to be present inside the
container and on your operating system in order for this to work! Install tar on UNIX systems with e.g. your
package manager, on Windows there’s e.g. cwRsync . If you cannot install tar on your host, there’s also the
possibility of logging into the Pod and using curl -0 <url>.

Solution

This is how you copy the database dump into the MariaDB Pod.
Download the dump.sql or get it with curl:

curl -0 https://raw.githubusercontent.com/acend/kubernetes-basics-training/main/content/en/docs/attaching-a-database/du
mp.sql

Copy the dump into the MariaDB Pod:

oc cp ./dump.sgl <podname>:/tmp/ --namespace <namespace>
This is how you log into the MariaDB Pod:

oc rsh --namespace <namespace> <podname>
This command shows how to drop the whole database:

mysql -u$MYSQL_USER -p$MYSQL_PASSWORD -h$MARIADB_SERVICE_HOST $MYSQL_DATABASE

48 /91

https://raw.githubusercontent.com/acend/kubernetes-basics-training/main/content/en/docs/attaching-a-database/dump.sql
https://www.itefix.net/cwrsync
https://raw.githubusercontent.com/acend/kubernetes-basics-training/main/content/en/docs/attaching-a-database/dump.sql

- acend gmbh

drop database ‘acend_exampledb;
create database "acend_exampledb;
exit

Import a dump:

mysqgl -u$MYSQL_USER -p$MYSQL_PASSWORD -h$MARIADB_SERVICE_HOST $MYSQL_DATABASE < /tmp/dump.sql

Check your app to see the imported “Hellos”.

Note
You can find your app URL by looking at your route:

oc get route --namespace <namespace>

Note

A database dump can be created as follows:

oc rsh --namespace <namespace> <podname>

mysqldump --user=$MYSQL_USER --password=$MYSQL_PASSWORD -h$MARIADB_SERVICE_HOST $MYSQL_DATABASE > /tmp/dump.sql

oc cp <podname>:/tmp/dump.sql /tmp/dump.sql

49 /91

- acend gmbh

8. Persistent storage

By default, data in containers is not persistent as was the case e.q. in 7. Attaching a database. This means
that the data written in a container is lost as soon as it does not exist anymore. We want to prevent this
from happening. One possible solution to this problem is to use persistent storage.

Request storage

Attaching persistent storage to a Pod happens in two steps. The first step includes the creation of a so-
called PersistentVolumeClaim (PVC) in our namespace. This claim defines amongst other things what size
we would like to get.

The PersistentVolumeClaim only represents a request but not the storage itself. It is automatically going to
be bound to a PersistentVolume by OpenShift, one that has at least the requested size. If only volumes exist
that have a bigger size than was requested, one of these volumes is going to be used. The claim will
automatically be updated with the new size. If there are only smaller volumes available, the claim cannot be
fulfilled as long as no volume with the exact same or larger size is created.

Attaching a volume to a Pod

In a second step, the PVC from before is going to be attached to the Pod. In 5. Scaling we used oc set to
add a readiness probe to the Deployment. We are now going to do the same and insert the
PersistentVolume.

Task 8.1: Add a PersistentVolume

The oc set volume command makes it possible to create a PVC and attach it to a Deployment in one fell
swoop:

Note

If you are using Windows, your shell might assume that it has to use the POSIX-to-Windows path conversion
for the mount path /var/1ib/mysql . PowerShell is known to not do this while, e.g., Git Bash does.

Prepend your command with Msys_No_paTHconv=1 if the resulting mount path was mistakenly converted.

oc set volume deploy/mariadb --add --name=mariadb-data --claim-name=mariadb-data --type persistentVolumeClaim --mount-p
ath=/var/lib/mysql --claim-size=1G --overwrite --namespace <namespace>

With the instruction above we create a PVC named mariadb-data of 1Gi in size, attach it to the
DeploymentConfig mariads and mount it at /var/lib/mysql . This is where the MariaDB process writes its data
by default so after we make this change, the database will not even notice that it is writing in a
PersistentVolume.

Note

Because we just changed the DeploymentConfig with the oc set command, a new Pod was automatically
redeployed. This unfortunately also means that we just lost the data we inserted before.

We need to redeploy the application pod, our application automatically creates the database schema at

50/91

- acend gmbh
startup time. Wait for the database pod to be started fully before restarting the application pod.

If you want to force a redeployment of a Pod, you can use this:
oc rollout restart deployment example-web-app --namespace <namespace>

Using the command oc get persistentvolumeclaim OF oc get pvc , We can display the freshly created
PersistentVolumeClaim:

oc get pvc --namespace <namespace>

Which gives you an output similar to this:

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
mariadb-data Bound pvc-2cb78deb-d157-11e8-a406-42010a840034 1Gi RWO standard 11s

The two columns status and voLuMe show us that our claim has been bound to the PersistentVolume pvc-
2cb78deb-d157-11e8-a406-42010a840034 .

Error case

If the container is not able to start it is the right moment to debug it! Check the logs from the container and
search for the error.

oc logs mariadb-f845ccdb7-hf2x5 --namespace <namespace>

Note

If the container won’t start because the data directory already has files in it, use the oc debug command
mentioned in 7. Attaching a database to check its content and remove it if necessary.

Task 8.2: Persistence check
Restore data
Repeat the task to import a database dump .

Test

Scale your MariaDB Pod to 0 replicas and back to 1. Observe that the new Pod didn’t loose any data.

51/91

file:///attaching-a-database/#task-75-import-a-database-dump

- acend gmbh

9. Additional concepts

OpenShift does not only know Pods, Deployments, Services, etc. There are various other kinds of resources.
In the next few labs, we are going to have a look at some of them.

9.1. StatefulSets

Stateless applications or applications with a stateful backend can be described as Deployments. However,
sometimes your application has to be stateful. Examples would be an application that needs a static, non-
changing hostname every time it starts or a clustered application with a strict start/stop order of its services
(e.g. RabbitMQ). These features are offered by StatefulSets.

Note

his lab does not depend on other labs.

Consistent hostnames

While in normal Deployments a hash-based name of the Pods (also represented as the hosthame inside the
Pod) is generated, StatefulSets create Pods with preconfigured names. An example of a RabbitMQ cluster
with three instances (Pods) could look like this:

rabbitmqg-0
rabbitmg-1
rabbitmg-2

Scaling

Scaling is handled differently in StatefulSets. When scaling up from 3 to 5 replicas in a Deployment, two
additional Pods are started at the same time (based on the configuration). Using a StatefulSet, scaling is
done serially:

Let’s use our RabbitMQ example again:

1. The StatefulSet is scaled up using: oc scale deployment rabbitmg --replicas=5 --namespace <namespace>
2. rabbitmg-3 is started
3. As soon as Pod rabbitmg-3 iS in Ready State the same procedure starts for rabbitmq-4

When scaling down, the order is inverted. The highest-numbered Pod will be stopped first. As soon as it has
finished terminating the now highest-numbered Pod is stopped. This procedure is repeated as long as the
desired number of replicas has not been reached.

Update procedure

During an update of an application with a StatefulSet the highest-numbered Pod will be the first to be
updated and only after a successful start the next Pod follows.

1. Highest-numbered Pod is stopped

2. New Pod (with new image tag) is started

3. If the new Pod successfully starts, the procedure is repeated for the second highest-numbered Pod
4. And so on

52 /91

- acend gmbh
If the start of a new Pod fails, the update will be interrupted so that the architecture of your application
won’t break.

Dedicated persistent volumes

A very convenient feature is that unlike a Deployment a StatefulSet makes it possible to attach a different,
dedicated persistent volume to each of its Pods. This is done using a so-called VolumeClaimTemplate. This
spares you from defining identical Deployments with 1 replica each but different volumes.

Conclusion

The controllable and predictable behavior can be a perfect match for applications such as RabbitMQ or etcd,
as you need unique names for such application clusters.

Task 9.1.1: Create a StatefulSet

Create a file named sts_nginx-cluster.yaml with the following definition of a StatefulSet:

apiVersion: apps/vi
kind: StatefulSet
metadata:
name: nginx-cluster
spec:
serviceName: '"nginx"
replicas: 1
selector:
matchLabels:
app: nginx
template:
metadata:
labels:

app: nginx

spec:
containers:

- name: nginx
image: REGISTRY-URL/acend/nginx-unprivileged:1.18-alpine
ports:

- containerPort: 8080
name: nginx
resources:
limits:
cpu: 40m
memory: 64Mi
requests:
cpu: 10m
memory: 32Mi

Create the StatefulSet:
oc apply -f sts_nginx-cluster.yaml --namespace <namespace>

To watch the pods’ progress, open a second console and execute the watch command:

53/91

- acend gmbh

oc get pods --selector app=nginx -w --namespace <namespace>

Note

Friendly reminder that the oc get -w command will never end unless you terminate it with cTRL-c.

Task 9.1.2: Scale the StatefulSet

Scale the StatefulSet up:

oc scale statefulset nginx-cluster --replicas=3 --namespace <namespace>

You can again watch the pods’ progress like you did in the first task.

Task 9.1.3: Update the StatefulSet

In order to update the image tag in use in a StatefulSet, you can use the oc set image command. Set the
StatefulSet’s image tag to 1atest :

oc set image statefulset nginx-cluster nginx=REGISTRY-URL/acend/nginx-unprivileged:latest --namespace <namespace>

Task 9.1.4: Rollback

Imagine you just realized that switching to the 1atest image tag was an awful idea (because it is generally
not advisable). Rollback the change:

oc rollout undo statefulset nginx-cluster --namespace <namespace>

Task 9.1.5: Cleanup

As with every other OpenShift resource you can delete the StatefulSet with:

To avoid issues on your personal progress dashboard, we would advise not to delete the StatefulSet from
this lab

oc delete statefulset nginx-cluster --namespace <namespace>

Further information can be found in the Kubernetes’ StatefulSet documentation or this published article .

54 /91

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://opensource.com/article/17/2/stateful-applications

- acend gmbh

9.2. DaemonSets

A DaemonSet is almost identical to a normal Deployment. The difference is that it makes sure that exactly
one Pod is running on every (or some specified) Node. When a new Node is added, the DaemonSet
automatically deploys a Pod on the new Node if its selector matches. When the DaemonSet is deleted, all

related Pods are deleted.

One obvious use case for a DaemonSet is some kind of agent or daemon to e.g. grab logs from each Node
of the cluster (e.g., Fluentd, Logstash or a Splunk forwarder).

More information about DaemonSet can be found in the documentation .

55/91

https://docs.openshift.com/container-platform/latest/nodes/jobs/nodes-pods-daemonsets.html

- acend gmbh

9.3. Cronjobs and Jobs

Jobs are different from normal Deployments: Jobs execute a time-constrained operation and report the
result as soon as they are finished; think of a batch job. To achieve this, a Job creates a Pod and runs a
defined command. A Job isn’t limited to creating a single Pod, it can also create multiple Pods. When a Job is
deleted, the Pods started (and stopped) by the Job are also deleted.

For example, a Job is used to ensure that a Pod is run until its completion. If a Pod fails, for example because
of a Node error, the Job starts a new one. A Job can also be used to start multiple Pods in parallel.

More detailed information can be retrieved from the OpenShift documentation .

Note

his lab depends on 7. Attaching a database or 8. Persistent storage.

Task 9.3.1: Create a Job for a database dump

Similar to the task to import a database dump , we now want to create a dump of the running database, but
without the need of interactively logging into the Pod.

Let's first look at the Job resource that we want to create.

56 /91

https://docs.openshift.com/container-platform/latest/nodes/jobs/nodes-nodes-jobs.html
file:///attaching-a-database/#task-75-import-a-database-dump

apiVersion: batch/v1

kind: Job
metadata:

name: database-dump

spec:

template:

spec:

containers:
- name: mariadb

image: REGISTRY-URL/acend/mariadb-105:1

command :

lock-tables --quick --add-drop-database --routines ${MYSQL_DATABASE} | gzip > /tmp/$FILENAME;

'bash’
-
'pipefail'’
e

>

trap "echo Backup failed; exit 0" ERR;
FILENAME=backup-${MYSQL_DATABASE}- ‘date +%4Y-%m-%d_%HIM%S " .sql.gz;

- acend gmbh

mysqldump --user=${MYSQL_USER} --password=${MYSQL_PASSWORD} --host=${MYSQL_HOST} --port=${MYSQL_PORT} --skip-

echo

nn,
’

echo "Backup successful”; du -h /tmp/$FILENAME;
env:

name: MYSQL_DATABASE
valueFrom:
secretKeyRef':
key: database-name
name: mariadb
name: MYSQL_USER
valueFrom:
secretKeyRef:
key: database-user
name: mariadb
name: MYSQL_HOST
value: mariadb
name: MYSQL_PORT
value: "3306"
name: MYSQL_PASSWORD
valueFrom:
secretKeyRef':
key: database-password
name: mariadb

resources:

limits:
cpu: 100m
memory: 128Mi
requests:
cpu: 20m
memory: 64Mi

restartPolicy: Never

The parameter .spec.template.spec.containers[0].image Shows that we use the same image as the running
database. In contrast to the database Pod, we don’t start a database afterwards, but run a mysqldump
command, specified with .spec.template.spec.containers[0].command . TO perform the dump, we use the

environment variables of the database deployment to set the hostname, user and password parameters of
the mysqldump command. The MysqL_Password Variable refers to the value of the secret, which is already used

for the database Pod. This way we ensure that the dump is performed with the same credentials.

Let's create our Job: Create a file named job_database-dump.yaml with the content above and execute the

following command:

oc apply -f ./job_database-dump.yaml --namespace <namespace>

Check if the Job was successful:

57 /91

- acend gmbh

oc describe jobs/database-dump --namespace <namespace>
The executed Pod can be shown as follows:
oc get pods --namespace <namespace>
To show all Pods belonging to a Job in a human-readable format, the following command can be used:

oc get pods --selector=job-name=database-dump --output=go-template="{{range .items}}{{.metadata.name}}{{end}}" --namesp
ace <namespace>

Cronjobs

A Cronjob is nothing else than a resource which creates a Job at a defined time, which in turn starts (as we
saw in the previous section) a Pod to run a command. Typical use cases are cleanup Jobs, which tidy up old
data for a running Pod, or a Job to regularly create and save a database dump as we just did during this lab.

The Cronjob’s definition will remind you of the Deployment’s structure, or really any other control resource.
There’s most importantly the schedule specification in cron schedule format , some more things you could
define and then the Job’s definition itself that is going to be created by the Cronjob:

apiVersion: batch/v1
kind: CronJob
metadata:
name: database-dump
spec:
schedule: "5 4 * x x"
concurrencyPolicy: "Replace"
startingDeadlineSeconds: 200
successfulJobsHistoryLimit: 3
failedJobsHistoryLimit: 1
jobTemplate:
spec:
template:
spec:
containers:
- name: mariadb

Further information can be found in the OpenShift CronJob documentation .

58 /91

https://crontab.guru/
https://docs.openshift.com/container-platform/latest/nodes/jobs/nodes-nodes-jobs.html

- acend gmbh

9.4. ConfigMaps

Similar to environment variables, ConfigMaps allow you to separate the configuration for an application from
the image. Pods can access those variables at runtime which allows maximum portability for applications
running in containers. In this lab, you will learn how to create and use ConfigMaps.

ConfigMap creation

A ConfigMap can be created using the oc create configmap command as follows:
oc create configmap <name> <data-source> --namespace <namespace>

Where the <data-source> can be a file, directory, or command line input.

Task 9.4.1: Java properties as ConfigMap

A classic example for ConfigMaps are properties files of Java applications which can’t be configured with
environment variables.

First, create a file called java.properties with the following content:

key=value
key2=value2

Now you can create a ConfigMap based on that file:
oc create configmap javaconfiguration --from-file=./java.properties --namespace <namespace>
Verify that the ConfigMap was created successfully:

oc get configmaps --namespace <namespace>

NAME DATA AGE
javaconfiguration 1 7s

Have a look at its content:

oc get configmap javaconfiguration -o yaml --namespace <namespace>

Which should yield output similar to this one:

59/91

- acend gmbh

apiVersion: vi
kind: ConfigMap
metadata:
name: javaconfiguration
data:
java.properties: |
key=value
key2=value2

Task 9.4.2: Attach the ConfigMap to a container

Next, we want to make a ConfigMap accessible for a container. There are basically the following possibilities
to achieve this :

¢ ConfigMap properties as environment variables in a Deployment
e Command line arguments via environment variables
e Mounted as volumes in the container

In this example, we want the file to be mounted as a volume inside the container.

As in 8. Persistent storage, we can use the oc set volume command to achieve this:

Note

If you are using Windows and your shell uses the POSIX-to-Windows path conversion, remember to prepend
your command with Msys_No_paTHconv=1 if the resulting mount path was mistakenly converted.

oc set volume deploy/example-web-app --add --configmap-name=javaconfiguration --mount-path=/etc/config --name=config-vo
lume --type configmap --namespace <namespace>

Note

his task doesn’t have any effect on the example application inside the container. It is for demonstration
purposes only.

This results in the addition of the following parts to the Deployment (check with oc get deploy example-web-app -o
yaml):

volumeMounts:
- mountPath: /etc/config
name: config-volume
volumes:
- configMap:
defaultMode: 420
name: javaconfiguration
name: config-volume

This means that the container should now be able to access the ConfigMap’s content in
/etc/config/java.properties . Let's check:

60/91

https://docs.openshift.com/container-platform/latest/applications/config-maps.html

- acend gmbh

oc exec <pod> --namespace <namespace> -- cat /etc/config/java.properties

Note

On Windows, you can use Git Bash with winpty oc exec -it <pod> --namespace <namespace> -- cat
//etc/config/java.properties.

key=value
key2=value2

Like this, the property file can be read and used by the application inside the container. The image stays
portable to other environments.

Task 9.4.3: ConfigMap environment variables
Use a ConfigMap by populating environment variables into the container instead of a file.

61/91

https://docs.openshift.com/container-platform/latest/applications/config-maps.html#nodes-pods-configmaps-use-case-consuming-in-env-vars_config-maps

- acend gmbh

9.5. ResourceQuotas and LimitRanges

In this lab, we are going to look at ResourceQuotas and LimitRanges. As OpenShift users, we are most
certainly going to encounter the limiting effects that ResourceQuotas and LimitRanges impose.

For this lab to work it is vital that you use the namespace <username>-quota-test !

ResourceQuotas

ResourceQuotas among other things limit the amount of resources Pods can use in a Namespace. They can
also be used to limit the total number of a certain resource type in a Project. In more detail, there are these
kinds of quotas:

o Compute ResourceQuotas can be used to limit the amount of memory and CPU

e Storage ResourceQuotas can be used to limit the total amount of storage and the number of
PersistentVolumeClaims, generally or specific to a StorageClass

¢ Object count quotas can be used to limit the number of a certain resource type such as Services, Pods
or Secrets

Defining ResourceQuotas makes sense when the cluster administrators want to have better control over
consumed resources. A typical use case are public offerings where users pay for a certain guaranteed
amount of resources which must not be exceeded.

In order to check for defined quotas in your Namespace, simply see if there are any of type ResourceQuota:
oc get resourcequota --namespace <namespace>-quota
To show in detail what kinds of limits the quota imposes:

oc describe resourcequota <quota-name> --namespace <namespace>-quota

For more details, have look into OpenShift’s documentation about resource quotas .

Requests and limits

As we've already seen, compute ResourceQuotas limit the amount of memory and CPU we can use in a
Project. Only defining a ResourceQuota, however is not going to have an effect on Pods that don’t define the
amount of resources they want to use. This is where the concept of limits and requests comes into play.

Limits and requests on a Pod, or rather on a container in a Pod, define how much memory and CPU this
container wants to consume at least (request) and at most (limit). Requests mean that the container will be
guaranteed to get at least this amount of resources, limits represent the upper boundary which cannot be
crossed. Defining these values helps OpenShift in determining on which Node to schedule the Pod because
it knows how many resources should be available for it.

Note

62 /91

https://docs.openshift.com/container-platform/latest/applications/quotas/quotas-setting-per-project.html

- acend gmbh
Containers using more CPU time than what their limit allows will be throttled. Containers using more
memory than what they are allowed to use will be killed.

Defining limits and requests on a Pod that has one container looks like this:

apiVersion: vi
kind: Pod
metadata:
name: lr-demo
namespace: lr-example
spec:
containers:
- name: lr-demo-ctr
image: REGISTRY-URL/acend/nginx-unprivileged:latest
resources:

limits:
memory: "200Mi"
cpu: "700m"
requests:
memory: "200Mi"
cpu: "700m"
You can see the familiar binary unit “Mi” is used for the memory value. Other binary (“Gi”, “Ki”, ...) or

decimal units (“M”, “G”, “K”, ...) can be used as well.

n u

The CPU value is denoted as “m”. “m” stands for millicou or sometimes also referred to as millicores where
"1000m" is equal to one core/vCPU/hyperthread.

Quality of service

Setting limits and requests on containers has yet another effect: It might change the Pod’s Quality of
Service class. There are three such QoS classes:

e Guaranteed
e Burstable
e BestFffort

The Guaranteed QoS class is applied to Pods that define both limits and requests for both memory and CPU
resources on all their containers. The most important part is that each request has the same value as the
limit. Pods that belong to this QoS class will never be killed by the scheduler because of resources running
out on a Node.

Note

If a container only defines its limits, OpenShift automatically assigns a request that matches the limit.

The Burstable QoS class means that limits and requests on a container are set, but they are different. It is
enough to define limits and requests on one container of a Pod even though there might be more, and it
also only has to define limits and requests on memory or CPU, not necessarily both.

The BestEffort QoS class applies to Pods that do not define any limits and requests at all on any containers.
As its class name suggests, these are the kinds of Pods that will be killed by the scheduler first if a Node
runs out of memory or CPU. As you might have already guessed by now, if there are no BestEffort QoS Pods,
the scheduler will begin to kill Pods belonging to the class of Burstable. A Node hosting only Pods of class
Guaranteed will (theoretically) never run out of resources.

LimitRanges

63/91

- acend gmbh
As you now know what limits and requests are, we can come back to the statement made above:

As we've already seen, compute ResourceQuotas limit the amount of memory and CPU we can use in a
Namespace. Only defining a ResourceQuota, however is not going to have an effect on Pods that don't
define the amount of resources they want to use. This is where the concept of limits and requests comes
into play.

So, if a cluster administrator wanted to make sure that every Pod in the cluster counted against the
compute ResourceQuota, the administrator would have to have a way of defining some kind of default limits
and requests that were applied if none were defined in the containers. This is exactly what LimitRanges are
for.

Quoting the Kubernetes documentation , LimitRanges can be used to:

e Enforce minimum and maximum compute resource usage per Pod or container in a Namespace
¢ Enforce minimum and maximum storage requests per PersistentVolumeClaim in a Namespace
* Enforce a ratio between request and limit for a resource in a Namespace

e Set default request/limit for compute resources in a Namespace and automatically inject them to
containers at runtime

If for example a container did not define any requests or limits and there was a LimitRange defining the
default values, these default values would be used when deploying said container. However, as soon as
limits or requests were defined, the default values would no longer be applied.

The possibility of enforcing minimum and maximum resources and defining ResourceQuotas per Namespace
allows for many combinations of resource control.

Task 9.5.1: Namespace

Remember to use the namespace <username>-quota-test , otherwise this lab will not work!

Analyse the LimitRange in your Namespace (there has to be one, if not you are using the wrong
Namespace):

oc describe limitrange --namespace <namespace>-quota

The command above should output this (name and Namespace will vary):

Name : ce@lalb6-a162-479d-847c-4821255cc6db

Namespace: eltony-quota-lab

Type Resource Min Max Default Request Default Limit Max Limit/Request Ratio
Container memory - - 16Mi 32Mi -

Container cpu - - 10m 100m -

Check for the ResourceQuota in your Namespace (there has to be one, if not you are using the wrong
Namespace):

oc describe quota --namespace <namespace>-quota

64 /91

https://kubernetes.io/docs/concepts/policy/limit-range/

- acend gmbh
The command above will produce an output similar to the following (name and namespace may vary)

Name: lab-quota
Namespace: eltony-quota-lab
Resource Used Hard
requests.cpu 0 100m
requests.memory 0 100Mi

Task 9.5.2: Default memory limit

Create a Pod using the stress image:

apiVersion: vi
kind: Pod
metadata:
name: stress2much
spec:
containers:
- command:
- stress
- --vm
- “‘]”
- --vm-bytes
- 85M
- --vm-hang
= 090
image: REGISTRY-URL/acend/stress:latest
imagePullPolicy: Always
name: stress

Apply this resource with:

oc apply -f pod_stress2much.yaml --namespace <namespace>-quota

Note

ou have to actively terminate the following command pressing cTRL+c on your keyboard.

Watch the Pod’s creation with:

oc get pods --watch --namespace <namespace>-quota

You should see something like the following:

NAME READY STATUS RESTARTS AGE
stress2much 0/1 ContainerCreating 0 1s
stress2much 0/1 ContainerCreating 0 2s
stress2much 0/1 OOMKilled 0 5s
stress2much 1/1 Running 1 7s
stress2much 0/1 OOMKilled 1 9s
stress2much 0/1 CrashLoopBackOff 1 20s

65/91

- acend gmbh
The stressamuch Pod was OOM (out of memory) killed. We can see this in the status field. Another way to find
out why a Pod was killed is by checking its status. Output the Pod’s YAML definition:

oc get pod stress2much --output yaml --namespace <namespace>-quota

Near the end of the output you can find the relevant status part:

containerStatuses:

- containerID: docker://da2473f1c8ccdffbb824d03689e9fe738ed689853e9c2643c37f206d10f93a73
image: REGISTRY-URL/acend/stress:latest
lastState:
terminated:

reason: OOMKilled

So let’'s look at the numbers to verify the container really had too little memory. We started the stress

command using the parameter --vm-bytes 85M which means the process wants to allocate 85 megabytes of
memory. Again looking at the Pod’s YAML definition with:

oc get pod stress2much --output yaml --namespace <namespace>-quota
reveals the following values:

resources:
limits:
cpu: 100m
memory: 32Mi
requests:
cpu: 10m
memory: 16Mi

These are the values from the LimitRange, and the defined limit of 32 MiB of memory prevents the stress
process of ever allocating the desired 85 MB.

Let’s fix this by recreating the Pod and explicitly setting the memory request to 85 MB.

First, delete the stressamuch pod with:
oc delete pod stress2much --namespace <namespace>-quota

Then create a new Pod where the requests and limits are set:

66 /91

- acend gmbh

apiVersion: vi
kind: Pod
metadata:
name: stress
spec:
containers:
- command:
- stress
- --vm
- ”‘I”
- --vm-bytes
- 85M
- --vm-hang
- "‘]”
image: REGISTRY-URL/acend/stress:latest
imagePullPolicy: Always
name: stress
resources:
limits:
cpu: 100m
memory: 100Mi
requests:
cpu: 10m
memory: 85Mi

And apply this again with:

oc apply -f pod_stress.yaml --namespace <namespace>-quota

Note

Remember, if you only set the limit, the request will be set to the same value.

You should now see that the Pod is successfully running:

NAME READY STATUS RESTARTS AGE
stress 1/1 Running @ 25s

Task 9.5.3: Hitting the quota

Create another Pod, again using the stress image. This time our application is less demanding and only

needs 10 MB of memory (--vm-bytes 1M):

Create a new Pod resource with:

67 /91

- acend gmbh

apiVersion: vi
kind: Pod
metadata:
name: overbooked
spec:
containers:
- command:
- stress
- --vm
- ”‘I”
- --vm-bytes
- 10M
- --vm-hang
- "‘]”
image: REGISTRY-URL/acend/stress:latest
imagePullPolicy: Always
name: overbooked

oc apply -f pod_overbooked.yaml --namespace <namespace>-quota

We are immediately confronted with an error message:

Error from server (Forbidden): pods "overbooked" is forbidden: exceeded quota: lab-quota, requested: memory=16Mi, used:
memory=85Mi, limited: memory=100Mi

The default request value of 16 MiB of memory that was automatically set on the Pod lets us hit the quota
which in turn prevents us from creating the Pod.

Let’'s have a closer look at the quota with:

oc get quota --output yaml --namespace <namespace>-quota

which should output the following YAML definition:

status:
hard:
cpu: 100m
memory: 100Mi
used:
cpu: 20m
memory: 80Mi

The most interesting part is the quota’s status which reveals that we cannot use more than 100 MiB of
memory and that 80 MiB are already used.

Fortunately, our application can live with less memory than what the LimitRange sets. Let’s set the request
to the remaining 10 MiB:

68 /91

- acend gmbh

apiVersion: vi
kind: Pod
metadata:
name: overbooked
spec:
containers:
- command:
- stress
- --vm
- ”’]”
- --vm-bytes
- 10M
- --vm-hang
- ”‘I”
image: REGISTRY-URL/acend/stress:latest
imagePullPolicy: Always
name: overbooked
resources:
limits:
cpu: 100m
memory: 50Mi
requests:
cpu: 10m
memory: 10Mi

And apply with:

oc apply -f pod_overbooked.yaml --namespace <namespace>-quota

Even though the limits of both Pods combined overstretch the quota, the requests do not and so the Pods
are allowed to run.

69 /91

- acend gmbh

9.6. Init containers

A Pod can have multiple containers running apps within it, but it can also have one or more /nit containers,
which are run before the app container is started.

Init containers are exactly like regular containers, except:

e Init containers always run to completion.
e Each init container must complete successfully before the next one starts.

Check out the Init Containers documentation for more details.

Task 9.6.1: Add an init container

In 7. Attaching a database you created the example-web-app application. In this task, you are going to add an
init container which checks if the MariaDB database is ready to be used before actually starting your
example application.

Edit your existing example-web-app Deployment by changing your local deployment_example-web-app.yaml . Add the
init container into the existing Deployment (same indentation level as containers):

spec:
initContainers:
- name: wait-for-db
image: REGISTRY-URL/acend/busybox:1.28
command :
L
"sh",
"en,
"until nslookup mariadb.$(cat /var/run/secrets/kubernetes.io/serviceaccount/namespace).svc.cluster.local;
do echo waiting for mydb; sleep 2; done",

]

And then apply again with:

oc apply -f deployment_example-web-app.yaml --namespace <namespace>

Note

his obviously only checks if there is a DNS Record for your MariaDB Service and not if the database is
ready. But you get the idea, right?

Let’s see what has changed by analyzing your newly created example-web-app Pod with the following command
(use oc get pod Or auto-completion to get the Pod name):

oc describe pod <pod> --namespace <namespace>

You see the new init container with the name wait-for-db :

70/91

https://docs.openshift.com/container-platform/latest/nodes/containers/nodes-containers-init.html

- acend gmbh

Init Containers:

wait-for-db:
Container ID: docker://77e6e309c88cfe62d03ed97e8fae20704bbf547a1e717a8f699ba79d9879cca?2
Image: busybox
Image ID: docker-pullable://busybox@sha256:141c253bc4c3fd0a201d32dc1f493bcf3fffO03b6df416deadf41046e0f37d47
Port: <none>
Host Port: <none>
Command:
sh

-C
until nslookup mariadb.$(cat /var/run/secrets/kubernetes.io/serviceaccount/namespace).svc.cluster.local; do echo
waiting for mydb; sleep 2; done

State: Terminated
Reason: Completed
Exit Code: 0
Started: Tue, 10 Nov 2020 21:00:24 +0100
Finished: Tue, 10 Nov 2020 21:02:52 +0100
Ready: True
Restart Count: @
Environment: <none>
Mounts:

/var/run/secrets/kubernetes.io/serviceaccount from default-token-xz2b7 (ro)

The init container has the state: Terminated @and an Exit Code: @ Which means it was successful. That’'s what
we wanted, the init container was successfully executed before our main application.

You can also check the logs of the init container with:
oc logs -c wait-for-db <pod> --namespace <namespace>

Which should give you something similar to:

Server: 10.43.0.10
Address 1: 10.43.0.10 kube-dns.kube-system.svc.cluster.local

Name: mariadb.acend-test.svc.cluster.local
Address 1: 10.43.243.105 mariadb.acend-test.svc.cluster.local

Deployment hooks on OpenShift

A similar concept are the so-called pre and post deployment hooks. Those hooks basically give the
possibility to execute Pods before and after a deployment is in progress.

Check out the official documentation for further information.

71/91

https://docs.openshift.com/container-platform/latest/applications/deployments/deployment-strategies.html

- acend gmbh

9.7. Sidecar containers

Let’s first have another look at the Pod’s description on the Kubernetes documentation page :

A Pod (as in a pod of whales or pea pod) is a group of one or more containers (such as Docker containers),
with shared storage/network, and a specification for how to run the containers. A Pod’s contents are
always co-located and co-scheduled, and run in a shared context. A Pod models an application-specific
“logical host” - it contains one or more application containers which are relatively tightly coupled — in a
pre-container world, being executed on the same physical or virtual machine would mean being executed
on the same logical host. The shared context of a Pod is a set of Linux namespaces, cgroups, and
potentially other facets of isolation - the same things that isolate a Docker container. Within a Pod’s
context, the individual applications may have further sub-isolations applied.

A sidecar container is a utility container in the Pod. Its purpose is to support the main container. It is
important to note that the standalone sidecar container does not serve any purpose, it must be paired with
one or more main containers. Generally, sidecar containers are reusable and can be paired with numerous
types of main containers.

In a sidecar pattern, the functionality of the main container is extended or enhanced by a sidecar container
without strong coupling between the two. Although it is always possible to build sidecar container
functionality into the main container, there are several benefits with this pattern:

« Different resource profiles, i.e. independent resource accounting and allocation

¢ Clear separation of concerns at packaging level, i.e. no strong coupling between containers

e Reusability, i.e., sidecar containers can be paired with numerous “main” containers

e Failure containment boundary, making it possible for the overall system to degrade gracefully
¢ Independent testing, packaging, upgrade, deployment and if necessary rollback

Task 9.7.1: Add a Prometheus MySQL exporter as a
sidecar

In 8. Persistent storage you created a MariaDB deployment. In this task you are going to add the

Prometheus MySQL exporter to it.

Change the existing mariado Deployment using by first editing your local mariadb.yam1 file. Add a new
(sidecar) container into your Deployment:

And add a new (sidecar) container to it:

containers:
- image: REGISTRY-URL/acend/mysqgld-exporter:latest-2023.06.17-00.13.04
name: mysqgld-exporter
env:
- name: MYSQL_DATABASE_ROOT_PASSWORD
valueFrom:
secretKeyRef:
key: database-root-password
name: mariadb
- name: DATA_SOURCE_NAME
value: root:$(MYSQL_DATABASE_ROOT_PASSWORD)@(localhost:3306)/

and then apply the change with:

72 /91

https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://github.com/prometheus/mysqld_exporter

- acend gmbh

oc apply -f mariadb.yaml --namespace <namespace>

Your Pod now has two running containers. Verify this with:

oc get pod --namespace <namespace>

The output should look similar to this:

NAME

mariadb-65559644c9-cdjjk

READY
2/2

STATUS
Running @

RESTARTS

AGE
5m35s

Note the Rreapy column which shows you 2 ready containers.

You can get the logs from the mysqld-exporter with:

oc logs <pod> -c mysqgld-exporter --namespace <namespace>

Which gives you an output similar to this:

time="2020-05-10T11:31:022" level=info msg="Starting mysqld_exporter (version=0.12.1, branch=HEAD, revision=48667bf7c3b
438b5e93b259f3d17b70a7c9aff96)" source="mysqld_exporter.go:257"
time="2020-05-10T11:31:02Z" level=info msg="Build context (go=gol1.12.7, user=root@@b3e56a7bcOa, date=20190729-12:35:58)

source=

:022"
:02Z"
:02Z"
:022"
:022"
:022"
:022"
:02Z"

mysqgld_exporter.go:258"
time="2020-05-10T11:
time="2020-05-10T11:
time="2020-05-10T11:
time="2020-05-10T11:
time="2020-05-10T11:
time="2020-05-10T11:
time="2020-05-10T11:
time="2020-05-10T11:

level=info
level=info
level=info
level=info
level=info
level=info
level=info
level=info

msg="Enabled scrapers:" source="mysqld_exporter.go:269"

msg=" --collect.
msg=" --collect.
msg=" --collect.
msg=" --collect.
msg=" --collect.
msg=" --collect

global_variables" source="mysqld_exporter.go:273"

slave_status" source="mysqld_exporter.go:273"

global_status" source="mysqld_exporter.go:273"
info_schema.query_response_time" source="mysqld_exporter.go:273"

info_schema.innodb_cmp" source="mysqld_exporter.go:273"

.info_schema.innodb_cmpmem" source="mysqgld_exporter.go:273"

msg="Listening on :9104" source="mysqld_exporter.go:283"

By using the port-forward subcommand, you can even have a look at the Prometheus metrics:

oc port-forward <pod> 9104 --namespace <namespace>

And then use curl to check the mysqld_exporter metrics with:

curl http://localhost:9104/metrics

73 /91

- acend gmbh

10. Deployment strategies

Note
his lab is optional.

In this lab, we are going to have a look at the different Deployment strategies.

This document should give you a good start. For more details, have a look at the examples or use this demo
in which the different strategies are implemented as Helm charts.

Task 10.1: Apply deployment strategies

Apply some deployment strategies to the example from the Scaling .

74 /91

https://www.cncf.io/wp-content/uploads/2018/03/CNCF-Presentation-Template-K8s-Deployment.pdf
https://github.com/ContainerSolutions/k8s-deployment-strategies
https://github.com/acend/deployment-strategies-demo
file:///scaling

- acend gmbh

11. Helm

Helm is a Cloud Native Foundation project to define, install and manage applications in Kubernetes.

tl:dr

Helm is a Package Manager for Kubernetes

e package multiple K8s resources into a single logical deployment unit
e ... butit’s not just a Package Manager

Helm is a Deployment Management for Kubernetes

¢ do a repeatable deployment

e manage dependencies: reuse and share

e manage multiple configurations

¢ update, rollback and test application deployments

11.1. Helm overview

Ok, let’s start with Helm. First, you have to understand the following 3 Helm concepts: Chart, Repository
and Release.

A Chart is a Helm package. It contains all of the resource definitions necessary to run an application, tool,
or service inside of a Kubernetes cluster. Think of it like the Kubernetes equivalent of a Homebrew formula,
an Apt dpkg, or a Yum RPM file.

A Repository is the place where charts can be collected and shared. It's like Perl’s CPAN archive or the
Fedora Package Database, but for Kubernetes packages.

A Release is an instance of a chart running in a Kubernetes cluster. One chart can often be installed many
times in the same cluster. Each time it is installed, a new release is created. Consider a MySQL chart. If you
want two databases running in your cluster, you can install that chart twice. Each one will have its own
release, which will in turn have its own release name.

With these concepts in mind, we can now explain Helm like this:

Helm installs charts into Kubernetes, creating a new release for each installation. To find new charts, you
can search Helm chart repositories.

75/91

https://github.com/helm/helm
https://www.cncf.io/

- acend gmbh

11.2. CLI installation

This guide shows you how to install the heim CLI tool. helm can be installed either from source or from pre-
built binary releases. We are going to use the pre-built releases. neim binaries can be found on Helm'’s

release page for the usual variety of operating systems.

If you do this training in our acend web based environment, no installation is required.

Task 11.2.1: Install CLI

Install the CLI for your Operating System

1. Download the latest release
2. Unpack it (e.g. tar -zxvf <filename>)

3. Copy to the correct location
o Linux: Find the helm binary in the unpacked directory and move it to its desired destination (e.g. mv

linux-amd64/helm ~/.local/bin/]
= The desired destination should be listed in your $PATH environment variable (echo $PATH)

o macOS: Find the helm binary in the unpacked directory and move it to its desired destination (e.qg.

mv darwin-amd64/helm ~/bin/)
= The desired destination should be listed in your $PATH environment variable (echo $PATH)

o Windows: Find the nelm binary in the unpacked directory and move it to its desired destination
= The desired destination should be listed in your $PATH environment variable (echo $PATH)

Task 11.2.2: Verify

To verify, run the following command and check if version is what you expected:

helm version

The output is similar to this:

version.BuildInfo{Version:"v3.10.1", GitCommit:"9f88cch6aee40b9a0535fcc7efeabd55elef72¢c9", GitTreeState:"clean", GoVers
ion:"go1.18.7"}

From here on you should be able to run the client.

76 /91

https://github.com/helm/helm/releases
https://github.com/helm/helm/releases

- acend gmbh

11.3. Generic Chart setup

In the following labs we are going to create our first Helm Charts with the help of Baloise’s Generic Chart
and deploy them.

Baloise’s Generic Helm Chart is meant as a template and easy starting point to deploy common Kubernetes
resource manifests. By declaring the Generic Chart as a dependency of your own Chart, you can make use
of all the features the Generic Chart offers.

Task 11.3.1: Setup the dependency

So first, let’s create your own Chart. Open your favorite terminal and make sure you’re in the workspace for
this lab, €.J. cd ~/<workspace-kubernetes-training> :

helm create mychart

You will now find a mychart directory with the newly created chart. It already is a valid and fully functional
Chart which deploys an nginx instance. However, instead of using these generated templates and values,
we want to use the Generic Chart. Change into your Chart’s directory and remove the generated templates:

cd mychart/
rm -r templates/

Before we declare the Generic Chart as a dependency, have a look at the generated chart.yaml using your
favorite text editor:

vim Chart.yaml

As you can see, the chart.yaml defines the metadata for your chart, so feel free to change anything.

Also note that the version and appversion values are different. This is because the version field refers to the
Helm Chart’s version while the appversion refers to the application’s version that’s deployed using this Chart.

In order to declare the Generic Chart as a dependency, add the following lines to your chart.yaml :

dependencies:
- name: generic-chart
version: 3.13.0
repository: https://CHART-REPOSITORY-URL/shared/release/
alias: first-example-app

Save and close the file. You can check if you added the dependency correctly be executing:

helm dependency list

77 /91

- acend gmbh
Above command should show you the dependency:

helm dependency list
NAME VERSION REPOSITORY STATUS
generic-chart 3.13.0 https://CHART-REPOSITORY-URL/shared/release/ missing

Note the status field and its missing value. This is because the dependency has not yet been downloaded.
Let’'s change this, execute:

helm dependency update

Note that helm dependency 1ist now shows ok under status and the charts/ directory contains a gzipped
tarball.

78 /91

- acend gmbh

11.4. A first example using the Generic Chart

You're now all set to begin with a first example!

Task 11.4.1: Create a values.yaml file

Still inside your mychart Helm Chart directory, open the already existing values.yaml file. Inside you’ll find a
host of defined parameters. Delete them all.

Instead, fill in the following content:

first-example-app:
replicaCount: 1
image:
repository: REGISTRY-URL/example/nginx-sample
tag: latest
pullPolicy: IfNotPresent
ingress:
controller: Route
clusterName: CLUSTER-NAME
network:
http:
servicePort: 8080
ingress:
clusterName: CLUSTER-NAME
readinessProbe:
httpGet:
path: /
port: 8080
initialDelaySeconds: 5
timeoutSeconds: 1
resources:
requests:
cpu: 10m
memory: 16Mi
limits:
cpu: 200m
memory: 32Mi

Task 11.4.2: A first test

Before applying anything to the cluster, you should test if the current values have the desired effect. In
order to do so, execute the following command:

Note

Don’t forget to replace <username>.
helm template my-first-release-<username> .

Executing above command will output the rendered templates from the Generic Chart with the values you
defined inside values.yaml . Check what would be created and if the values are correct.

Task 11.4.3: Install the chart

79 /91

- acend gmbh
If you are satisfied with the output, install the release on the cluster:

Note

Don’t forget to replace <username> and <namespace>.

helm install my-first-release-<username> . --namespace <namespace>

You should get the following output:

NAME: my-first-release-<username>

LAST DEPLOYED: Tue Nov 22 16:40:01 2022
NAMESPACE: <namespace>

STATUS: deployed

REVISION: 1

TEST SUITE: None

Congratulations! You successfully deployed your first app using Helm!

You should now see a freshly created pod and a route inside your namespace. Check the route’s URL and
open it in your browser. A mountainous view and welcome message should greet you.

80/91

- acend gmbh

11.5. Generic Chart usage

You have now seen how to set up and use the Generic Chart. Now it’s your turn!

Task 11.5.1: Setup

Repeat the steps from 11.3. Generic Chart setup in order to create a new Chart.

Note

Note the alias: line inside chart.yaml . You can change this value to whatever you’d like, but you need to
use the same name as first line inside your values.yaml !

his is also how you can use the Generic Chart multiple times if you have more than one app/component.

Task 11.5.2: example-web-app

Implement the example-web-app application from lab 5. Scaling using the Generic Chart.

Note

Have a look at the Chart’s documentation in its git repository or in the Baloise documentation site for all the
available values.

Task 11.5.3: Your own applications

Do you have applications of your own? Deploy them using the Generic Chart!

81/91

- acend gmbh

12. Kustomize

Note
his lab is optional.

Kustomize is a tool to manage YAML configurations for Kubernetes objects in a declarative and reusable
manner. In this lab, we will use Kustomize to deploy the same app for two different environments.

Installation

Kustomize can be used in two different ways:

¢ As a standalone kustomize binary, downloadable from kubernetes.io
e With the parameter --kustomize Or -k in certain oc subcommands such as apply Or create

Note

ou might get a different behaviour depending on which variant you use. The reason for this is that the
version built into oc is usually older than the standalone binary.

Usage

The main purpose of Kustomize is to build configurations from a predefined file structure (which will be
introduced in the next section):

kustomize build <dir>

The same can be achieved with oc :
oc kustomize <dir>

The next step is to apply this configuration to the OpenShift cluster:
kustomize build <dir> | oc apply -f -

Orin one oc command with the parameter -k instead of -f:

oc apply -k <dir>

Task 12.1: Prepare a Kustomize config

82/91

https://kustomize.io/
https://kubectl.docs.kubernetes.io/installation/kustomize/

- acend gmbh
We are going to deploy a simple application:

e The Deployment starts an application based on nginx
¢ A Service exposes the Deployment
e The application will be deployed for two different example environments, integration and production

Kustomize allows inheriting Kubernetes configurations. We are going to use this to create a base
configuration and then override it for the different environments. Note that Kustomize does not use
templating. Instead, smart patch and extension mechanisms are used on plain YAML manifests to keep
things as simple as possible.

Get the example config

Find the needed resource files inside the folder content/en/docs/kustomize/kustomize Of the techlab github
repository. Clone the repository or get the content as zip

Change to the folder content/en/docs/kustomize/kustomize to execute the kustomize commands.

Note

ICommands for git checkout and folder switch:

git clone https://github.com/acend/kubernetes-basics-training.git
cd kubernetes-basics-training/content/en/docs/kustomize/kustomize/

File structure

The structure of a Kustomize configuration typically looks like this:

base
deployment.yaml
kustomization.yaml
service.yaml
overlays

roduction
EEE deployment-patch.yaml

kustomization.yaml
service-patch.yaml
staging

deployment-patch.yaml
kustomization.yaml

service-patch.yaml

Base

Let’s have a look at the base directory first which contains the base configuration. There’'s a deployment.yaml
with the following content:

83/91

https://github.com/acend/kubernetes-basics-training
https://github.com/acend/kubernetes-basics-training/archive/refs/heads/main.zip

- acend gmbh

apiVersion: apps/vi
kind: Deployment
metadata:
name: kustomize-app
spec:
selector:
matchLabels:
app: kustomize-app
template:
metadata:
labels:
app: kustomize-app
spec:
containers:
- name: kustomize-app
image: quay.io/acend/example-web-go

env:
- name: APPLICATION_NAME
value: app-base
command:
- sh
- -C
- |_
set -e
/bin/echo "My name is $APPLICATION_NAME"
/usr/local/bin/go
ports:
- name: http

containerPort: 80
protocol: TCP

There’s also a Service for our Deployment in the corresponding base/service.yaml :

apiVersion: vi
kind: Service
metadata:
name: kustomize-app
spec:
ports:
- port: 80
targetPort: 80
selector:
app: kustomize-app

And there’s an additional base/kustomization.yaml Which is used to configure Kustomize:

resources:
- service.yaml
- deployment.yaml

It references the previous manifests service.yaml and deployment.yaml and makes them part of our base
configuration.

Overlays

Now let’s have a look at the other directory which is called overlays . It contains two subdirectories staging
and production which both contain a kustomization.yaml with almost the same content.

overlays/staging/kustomization.yaml

84 /91

nameSuffix: -staging
bases:

- ../../base
patchesStrategicMerge:

- deployment-patch.yaml

- service-patch.yaml

overlays/production/kustomization.yaml :

nameSuffix: -production
bases:

- ../../base
patchesStrategicMerge:

- deployment-patch.yaml

- service-patch.yaml

Only the first key namesuffix differs.

- acend gmbh

In both cases, the kustomization.yaml references our base configuration. However, the two directories contain

two different deployment-patch.yaml files which patch the deployment.yam1 from our base configuration.

overlays/staging/deployment-patch.yaml :

apiVersion: apps/vi
kind: Deployment
metadata:
name: kustomize-app
spec:
selector:
matchLabels:
app: kustomize-app-staging
template:
metadata:
labels:
app: kustomize-app-staging
spec:
containers:
- name: kustomize-app
env:
- name: APPLICATION_NAME
value: kustomize-app-staging

overlays/production/deployment-patch.yaml :

85/91

- acend gmbh

apiVersion: apps/vi
kind: Deployment
metadata:
name: kustomize-app
spec:
selector:
matchLabels:
app: kustomize-app-production
template:
metadata:
labels:
app: kustomize-app-production
spec:
containers:
- name: kustomize-app
env:
- name: APPLICATION_NAME
value: kustomize-app-production

The main difference here is that the environment variable appLicATION_NAME iS set differently. The app label
also differs because we are going to deploy both Deployments into the same Namespace.

The same applies to our Service. It also comes in two customizations so that it matches the corresponding
Deployment in the same Namespace.

overlays/staging/service-patch.yaml

apiVersion: vi
kind: Service
metadata:
name: kustomize-app
spec:
selector:
app: kustomize-app-staging

overlays/production/service-patch.yaml :

apiVersion: vi
kind: Service
metadata:
name: kustomize-app
spec:
selector:
app: kustomize-app-production

Note

Il files mentioned above are also directly accessible from GitHub .

Prepare the files as described above in a local directory of your choice.

Task 12.2: Deploy with Kustomize

We are now ready to deploy both apps for the two different environments. For simplicity, we will use the
same Namespace.

86 /91

https://github.com/acend/kubernetes-basics-training/tree/master/content/en/docs/12/kustomize

- acend gmbh

oc apply -k overlays/staging --namespace <namespace>

service/kustomize-app-staging created
deployment.apps/kustomize-app-staging created

oc apply -k overlays/production --namespace <namespace>

service/kustomize-app-production created
deployment.apps/kustomize-app-production created

As you can see, we now have two deployments and services deployed. Both of them use the same base
configuration. However, they have a specific configuration on their own as well.

Let’s verify this. Our app writes a corresponding log entry that we can use for analysis:

oc get pods --namespace <namespace>

NAME READY STATUS RESTARTS AGE
kustomize-app-production-74c7bdb7d-8cccd 1/1 Running @ 2mls
kustomize-app-staging-7967885d5b-qp618 1/1 Running @ 5m33s

oc logs kustomize-app-staging-7967885d5b-qp618

My name is kustomize-app-staging

oc logs kustomize-app-production-74c7bdb7d-8cccd

My name is kustomize-app-production

Further information

Kustomize has more features of which we just covered a couple. Please refer to the docs for more
information.

e Kustomize documentation: https://kubernetes-sigs.github.io/kustomize/

+ API reference: https://kubernetes-sigs.github.io/kustomize/api-reference/

e Another kustomization.yaml reference: https://kubectl.docs.kubernetes.io/pages/reference/kustomize.html
87 /91

https://kubernetes-sigs.github.io/kustomize/
https://kubernetes-sigs.github.io/kustomize/api-reference/
https://kubectl.docs.kubernetes.io/pages/reference/kustomize.html

- acend gmbh

¢ Examples: https://github.com/kubernetes-sigs/kustomize/tree/master/examples

88 /91

https://github.com/kubernetes-sigs/kustomize/tree/master/examples

- acend gmbh

13. Kubernetes and OpenShift differences

Note
his lab is optional.

Even though OpenShift is based on Kubernetes, there are some important differences. As a concluding lab,
we are going to have a look at these differences.

Life cycle and versions

Red Hat releases a new OpenShift 4 release every six months, as is the case with Kubernetes. The
important difference however is that the latest OpenShift release is always based on the second latest
Kubernetes release.

Keep this in mind especially when using Kubernetes’ documentation e.g. about some resource type.

You can find out more about OpenShift’s life cycle policy on this page .

Resource types

OpenShift extends the Kubernetes API to support certain additional resource types.

Namespaces and Projects

In 2. First steps you created your first Project on OpenShift. You won't find the concept of a “Project” in
Kubernetes except in other Kubernetes distributions, specifically in Rancher.

|N ote
's and OpenShift’s concepts of a project have nothing in common.

A Project in OpenShift is based on the Namespace resource type. When creating a Project in OpenShift, a
Namespace with the exact same name is created in the background.

The probably only reason for the Project resource type to exist is that OpenShift provides additional
administrative controls for Projects. OpenShift users can, e.g., be prevented from creating their own
Namespaces/Projects .

Ingresses and Routes

Ingresses and Routes enable you to make an application reachable to the outside of OpenShift. They
contain the configuration needed and signal the platform that a certain service needs to be accessible to
the outside world.

Red Hat introduced the concept of Routes in OpenShift 3.0 and still uses it up until now. Support for the
Ingress resource type was introduced in OpenShift 3.10 which means that you can use both Routes and
Ingresses as you see fit. Of course both have their advantages and disadvantages.

One of the obvious advantages of the Ingress resource type is its compatibility with other Kubernetes
distributions. However, different kinds of Ingress controllers support different features making this
statement semisolid. One of the obvious advantages of using Routes is that they're easy to create using the

89/91

https://access.redhat.com/support/policy/updates/openshift/
https://rancher.com/docs/rancher/v2.x/en/cluster-admin/projects-and-namespaces/#about-projects
https://docs.openshift.com/container-platform/latest/rest_api/project_apis/project-apis-index.html
https://docs.openshift.com/container-platform/latest/applications/projects/configuring-project-creation.html#disabling-project-self-provisioning_configuring-project-creation
https://docs.openshift.com/container-platform/3.10/release_notes/ocp_3_10_release_notes.html#ocp-310-support-for-kubernetes-ingress-objects

- acend gmbh
oC expose command.

Note

In OpenShift, creating an Ingress resource leads to the creation of a corresponding Route in the same
Namespace.

Task 13.1: Create an Ingress resource
In 5. Scaling you exposed the example-web-app application via Route using the oc expose command.

Expose the application using an Ingress resource. It's best to not delete the existing Route, so you can
compare them. Bear in mind that you need to use another hostname in that case.

Note

Make use of the Kubernetes documentation about Ingress resources.

Solution
Your Ingress resource should look similar to this:

apiVersion: networking.k8s.io/v1
kind: Ingress

metadata:
name: example-web-app
spec:
rules:
- host: <hostname>
http:
paths:
- path: /
pathType: Prefix
backend:

service:
name: example-web-app
port:
number: 5000

Deployments and DeploymentConfigs

OpenShift introduced the concept of DeploymentConfigs which later got introduced to upstream Kubernetes
as Deployments. The reason they don’t have the same name is because Deployments lack some features
that DeploymentConfigs offer. It's advisable however to use Deployments wherever possible as they're
compatible with other Kubernetes distributions where DeploymentConfigs are only supported on OpenShift.

The OpenShift documentation offers a detailed explanation of the differences. The features additionally
offered by DeploymentConfigs can be summarized as automation features to e.g. automatically trigger a
new deployment when the upstream image is updated.

ImageStreams

One of the reasons Kubernetes Deployments cannot support the missing automation features is because in
OpenShift, they are based on other resource types like the ImageStream. Kubernetes has not yet adopted a
similar resource type.

ImageStreams are references to an actual image in an image registry. They can be configured to
periodically check if the referenced image has been updated in order to trigger builds or deployments. More

90/91

https://docs.openshift.com/container-platform/latest/applications/deployments/what-deployments-are.html

- acend gmbh
details can be found in OpenShift’s documentation .

BuildConfigs and Builds

You already encountered these resource types in 3. Deploying a container image. BuildConfigs and Builds
make it possible to build a container image on OpenShift instead of relying on an external tool.

91/91

https://docs.openshift.com/container-platform/latest/openshift_images/images-understand.html#images-imagestream-use_images-understand

	Setup
	1. Web terminal
	2. Local usage
	3. Other ways to work with OpenShift

	Labs
	1. Introduction
	2. First steps
	3. Deploying a container image
	4. Exposing a service
	5. Scaling
	6. Troubleshooting
	7. Attaching a database
	8. Persistent storage
	9. Additional concepts
	10. Deployment strategies
	11. Helm
	12. Kustomize
	13. Kubernetes and OpenShift differences

